首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the main problems of bioelectromagnetics - the unbelievable narrow resonance peaks at the cyclotron frequency of the alternating magnetic field - was considered. Modern electrodynamics of condensed matter clearly brings out that the reason of this phenomenon is extremely low viscosity within coherence domains of aqueous electrolytic solutions. The electrochemical model of action of combined static and alternating magnetic fields on aqueous solutions of amino acids is proposed. The possibility of arising a succession of changes in ionic forms in these processes was revealed. The dipole ions (zwitterions) together with water molecules electrostatically forming joint groups in the solution, create favorable conditions for arising mixed coherence domains there. Simultaneously with evolution of the coherent processes in these domains, the amino acid zwitterions are transforming into the usual ionic form, fit for cyclotron resonance. The development of cyclotron resonance under action of combined magnetic fields increases the ion kinetic energy, and the ions leave the domains for the incoherent component of the solution according to Del Giudice pattern (Comisso et al., 2006; Del Giudice et al., 2002), creating the peak current through the solution. Then the ions are transforming little by little into zwitterionic form again; after that, the solution becomes ready to react on exposure of magnetic fields again. The possibilities for formation of coherence domains composed of water molecules together with peptide molecules or protein ones are discussed.  相似文献   

2.
The dissociation into halves of the α-component of Helix pomatia haemocyanin was investigated by light scattering and ultracentrifugation. Within the normal pH-stability region, a dissociation into halves can be obtained with alkali chlorides. This dissociation levels off at a salt concentration of 1 m. In contrast with the pH-induced dissociation, this process is both completely reversible and rapid.A study with different alkali halidea and other salts reveala the dissociation to be caused by the anions and not merely by an effect of the ionic strength. For some salts a dissociation into tenths and 20ths is found. The sequence of efficiency of the anions is practically that of the chaotropic ions (anions that favour the transfer of apolar groups to water). The effect of other parameters which influence the process is studied. The dependence on protein concentration is much smaller than expected from the law of mass action. This deviation, together with the unusual dissociation pattern of the protein in the ultracentrifuge, can be explained by the presence of different thermodynamic components.  相似文献   

3.
Factors determining the change of dissociation constants of ionogenic groups upon their transfer from water into a protein globule are considered. The change of the short-range interaction is simulated with the aid of two model solvents: dimethylformamide (DMF) and formamide (FA). The change of Bornian solvation energy is calculated taking into account the interaction of ions situated inside a protein globule with the surrounding electrolyte solution. The change of ion energy due to the intraglobular electric field preexisting in the enzyme molecule is calculated. Each of the factors listed above gives a large contribution into the ion energy in the case of Asp-102 these contributions compensate each other to a great extent.  相似文献   

4.
The primary metabolism of protobionts was probably based on the electron transfer reactions regulated by catalysts or photosensitizing pigments. The action of photoreceptive pigments was inevitable in the case of electron transfer leading to light energy storage in the reaction products. The primitive tetrapyrrolic pigments formed abiogenically (porphin, chlorin) as well as their more complicated biogenic analogs (chlorophylls) are capable to photosensitize electron transfer in systems, having various degree of molecular complexity. The inorganic photosensitizers (titanim dioxide, zinc oxide, etc.). being excited in near UV are able to perform the same reactions as porphyrins —electron transfer from donor to acceptor molecule (including photoreduction of viologens) or water molecule photooxidation (oxygen liberation), coupled with reduction of ferric compounds and quinones. The inorganic photosensitizers are not used in biological evolution; actually the inorganic ions entered into tetrapyrrolic cycle, forming effective photocatalysts. Inclusion of pigments into primary membranes led to elaborated coupling between pigments and enzymatic systems. The involvement of the excited pigments into the biocatalytic electron transfer chain served as prerequisite of effective function of photosynthetic organisms.  相似文献   

5.
In calculating the medium reorganization energy and the activation energy of charge transfer enzymatic reactions, an allowance is made for the enhanced conformational mobility of the protein external region. The two-layer model is proposed, the outer layer having a higher static dielectric constant. The calculations show that the higher mobility in the outer layer causes some quantitative rather than qualitative changes. The main result obtained earlier is confirmed: the reorganization energy for charge transfer reaction in protein globule is much lower than in water and for this reason the activation energy also decreases. The higher dielectric constant of the outer layer somewhat favours the introduction of charge into active site and hence favours the natural selection of proteins as enzymes. This effect cannot exclude the necessity of other factors stabilizing ionic forms inside the protein globule. Freezing of conformational mobility (say, at low temperatures) hinders the charge transfer process as a consequence of the difficulty in equalizing the initial and final energy levels.  相似文献   

6.
A “parallel plate” model describing the electrostatic potential energy of protein-protein interactions is presented that provides an analytical representation of the effect of ionic strength on a bimolecular rate constant. The model takes into account the asymmetric distribution of charge on the surface of the protein and localized charges at the site of electron transfer that are modeled as elements of a parallel plate condenser. Both monopolar and dipolar interactions are included. Examples of simple (monophasic) and complex (biphasic) ionic strength dependencies obtained from experiments with several electron transfer protein systems are presented, all of which can be accommodated by the model. The simple cases do not require the use of both monopolar and dipolar terms (i.e., they can be fit well by either alone). The biphasic dependencies can be fit only by using dipolar and monopolar terms of opposite sign, which is physically unreasonable for the molecules considered. Alternatively, the high ionic strength portion of the complex dependencies can be fit using either the monopolar term alone or the complete equation; this assumes a model in which such behavior is a consequence of electron transfer mechanisms involving changes in orientation or site of reaction as the ionic strength is varied. Based on these analyses, we conclude that the principal applications of the model presented here are to provide information about the structural properties of intermediate electron transfer complexes and to quantify comparisons between related proteins or site-specific mutants. We also conclude that the relative contributions of monopolar and dipolar effects to protein electron transfer kinetics cannot be evaluated from experimental data by present approximations.  相似文献   

7.
The difference of the activation energies in a protein globule and water has been treated in terms of the theory of an elementary act of charge transfer reaction with regards to the energy spent on the transfer of charged reactants from water into the protein. The protein was treated as a structureless dielectric with a given optical and static dielectric constants surrounded by the aqueous phase. Reactions of different types (charge exchange between reactants, charge separation, neutralization, etc.) have been analyzed both under prevalence of purely electrostatic effects and under considerable nonelectrostatic contributions to the activation energies. It is shown that for all one-electron and most multi-electron reactions involving two reaction centres the energy spent for charged reactant transfer from water into protein is greater than the concomitant activation energy gain. The same effect takes place in a number of cases for multi-centre processes as well. To overcome the entropy hindrances, the reactants and catalysts must combine into multiparticle complexes, i.e. form microscopic regions of low dielectric constant. This results in increased effective activation energy as compared to reactions in water. It has been hypothesized that in order to make up for this loss the evolution has selected the proteins which are characterized by considerable intraglobular permanent electric fields. The presence in proteins of high concentrations of strongly polar peptide groups renders them advantageous in this respect over other polymers that are less polar.  相似文献   

8.
The enthalpies of transfer, ΔHtr, of a series of amides from water to aqueous solutions of either guanidinium hydrochloride (GuHCl) or potassium iodide were obtained from calorimetric measurements at 25°C. The amides were studied at molalities around 10?2 m while salt molalities ranged from 0–10 m. The amides investigated were Ac-Gly-NHMe, Ac-Gly-Gly-NHMe, Ac-Ala-NHMe, and Ac-Leu-NHMe. Use of an additivity assumption allowed the calculation of group contributions to ΔHtr in these two salt systems for the methyl group, leucyl side chain, and the peptide backbone unit. Values of the entropy of transfer were also obtained. The great ability of GuHCl to randomize protein structures appears to arise from effects on polar and nonpolar groups, which are characterized by enthalpies and entropies of transfer not substantially different from those with KI, a salt comprised of ions of comparable size and polarizability. The difference in the sign of the free energies of transfer of nonpolar groups from water to MX solutions, negative for GuHCl and positive for KI, is the result of these small differences in enthalpies and entropies of transfer. Variations in water structure produced by differences in ionic properties rather than a mode of action for GuHCl very different from that of other salts characterizes its superior denaturing ability.  相似文献   

9.
The electrostatic potentials within the pore of the nicotinic acetylcholine receptor (nAChR) were determined using lanthanide-based diffusion-enhanced fluorescence energy transfer experiments. Freely diffusing Tb3+ -chelates of varying charge constituted a set of energy transfer donors to the acceptor, crystal violet, a noncompetitive antagonist of the nAChR. Energy transfer from a neutral Tb3+ -chelate to nAChR-bound crystal violet was reduced 95% relative to the energy transfer to free crystal violet. This result indicated that crystal violet was strongly shielded from solvent when bound to the nAChR. Comparison of energy transfer from positively and negatively charged chelates indicate negative electrostatic potentials of -25 mV in the channel, measured in low ionic strength, and -10 mV measured in physiological ionic strength. Debye-Hückel analyses of potentials determined at various ionic strengths were consistent with 1-2 negative charges within 8 A of the crystal violet binding site. To complement the energy transfer experiments, the influence of pH and ionic strength on the binding of [3H]phencyclidine were determined. The ionic strength dependence of binding affinity was consistent with -3.3 charges within 8 A of the binding site, according to Debye-Hückel analysis. The pH dependence of binding had an apparent pKa of 7.2, a value indicative of a potential near -170 mV if the titratable residues are constituted of aspartates and glutamates. It is concluded that long-range potentials are small and likely contribute little to selectivity or conductance whereas close interactions are more likely to contribute to electrostatic stabilization of ions and binding of noncompetitive antagonists within the channel.  相似文献   

10.
The effects of dilute salts and anesthetics were studied on the impedance dispersion in the dipalmitoylphosphatidylcholine (DPPC) liposomes. Below the pre-transition temperature, the apparent activation energy for conductance in DPPC-H2O without salts was equivalent to pure water, 18.2 kJ mol-1. This suggests that the mobile ions (H3O+ and OH-) interact negligibly with the lipid surface below the pre-transition temperature. At pre-transition temperature, the apparent activation energy of the conductance decreased by the increase in the DPPC concentrations. The effects of various salts (LiCl, NaCl, KCl, KBr, and KI) on the apparent activation energy of the conductance were studied. Changes in anions, but not in cations, affected the activation energy. The order of the effect was Cl- less than Br- less than I-. Cations appear to be highly immobilized by hydrogen bonding to the phosphate moiety of DPPC. The smaller the ionic radius, the more ions are fixed on the surface at the expense of the free-moving species. The apparent activation energy of the transfer of ions at the vesicle surface was estimated from the temperature-dependence of the dielectric constant, and was 61.0 kJ mol-1 in the absence of electrolytes. In the presence of electrolytes, the order of the activation energy was F- greater than Cl- greater than Br- greater than I-. When the ionic radius is smaller, these anions interact with the hydration layer at the vesicle surface and the ionic transfer may become sluggish. In the absence of electrolytes, the apparent activation energy of the dielectric constant decreased by the increase in halothane concentrations. In the presence of electrolytes, however, the addition of halothane increased the apparent activation energy. We propose that the adsorption of halothane on the vesicle surface produces two effects: (1) destruction of the hydration shell, and (2) increase in the binding of electrolytes to the vesicle surface. In the absence of electrolytes, the first effect predominates and the apparent activation energy is decreased. In the presence of electrolytes, the latter effect predominates and the apparent activation energy is increased.  相似文献   

11.
The effect of the dipolar ions, glycine, glycylglycine, and glycylglycylglycine on the polymerization of tobacco mosaic virus (TMV) protein has been studied by the methods of light scattering and ultracentrifugation. All three dipolar ions promote polymerization. The major reaction in the early stage is transition from the 4 S to the 20 S state. As in the absence of dipolar ions, the polymerization is enhanced by an increase in temperature; it is endothermic and therefore entropy-driven. The effect of the dipolar ions can be understood in terms of their action as salting-out agents; they increase the activity coefficient of TMV A protein, the 4 S material, and thus shift the equilibrium toward the 20 S state. The salting-out constants, K, for the reaction in 0.10 ionic strength phosphate buffer at pH 6.7 was found by the light scattering method to be 1.6 for glycine, 2.5 for glycylglycine, and 2.5 for glycylglycylglycine. A value of 2.7 was obtained by the ultracentrifugation method for glycylglycine in phosphate buffer at 0.1 ionic strength and pH 6.8 at 10 degrees C. For both glycine and glycylglycine, K increases when the ionic strength of the phosphate buffer is decreased. This result suggests that electrolytes decrease the activity coefficient of the dipolar ions, a salting-in phenomenon. However, the salting-in constants evaluated from these results are substantially higher than those previously determined by solubility measurements. The effect of glycine and glycylglycine on polymerization was studied at pH values between 6.2 and 6.8. The effectiveness of both dipolar ions is approximately 50% greater at pH 6.8 than at pH 6.2. The variation of the extent of polymerization with pH in the presence of the dipolar ions is consistent with the interpretation that approximately one hydrogen ion is bound for half of the polypeptide units in the polymerized A protein.  相似文献   

12.
M Fuxreiter  R Osman 《Biochemistry》2001,40(49):15017-15023
BamHI is a type II restriction endonuclease that catalyzes the scission of the phoshodiester bond in the GAGTCC cognate sequence in the presence of two divalent metal ions. The first step of the reaction is the preparation of water for nucleophilic attack by Glu-113, which has been proposed to abstract the proton from the attacking water molecule. Alternatively, the 3'-phosphate group to the susceptible phosphodiester bond has been suggested to play a role as the general base. The two hypotheses have been tested by computer simulations using the semiempirical protein dipoles Langevin dipoles (PDLD/S) method. Deprotonation of water by Glu-113 has been found to be less favorable by 5.7 kcal/mol than metal-catalyzed deprotonation with a concomitant proton transfer to bulk solvent. The preparation of the nucleophile by the 3'-phosphate group is less favorable by 12.3 kcal/mol. These results suggest that both the general base and the substrate-assisted mechanisms in the first step of BamHI action are less likely than the metal-catalyzed reaction. The metal ions in the active site of BamHI make the largest contributions to the reduction of the free energy of hydroxide ion formation. On the basis of these findings we propose that the first step of endonuclease catalysis does not require a general base; rather, the essential attacking nucleophile in BamHI catalytic action is stabilized by the metal ions.  相似文献   

13.
Charge Motion during the Photocycle of Bacteriorhodopsin   总被引:2,自引:0,他引:2  
The function of bacteriorhodopsin in Halobacterium salinarum is to pump protons from the internal side of the plasma membrane to the external after light excitation, thereby building up electrochemical energy. This energy is transduced into biological energy forms. This review deals with one of the methods elaborated for recording the charge transfer inside the protein. In this method the current produced in oriented purple membrane containing bacteriorhodopsin is measured. It is shown that this method might be applied not only to correlate charge motion with the photocycle reactions but also for general problems like effect of water, electric field, and different ions and buffers for the functioning of proteins.  相似文献   

14.
Intestinal fatty acid binding protein (IFABP) is thought to participate in the intracellular transport of fatty acids (FAs). Fatty acid transfer from IFABP to phospholipid membranes is proposed to occur during protein-membrane collisional interactions. In this study, we analyzed the participation of electrostatic and hydrophobic interactions in the collisional mechanism of FA transfer from IFABP to membranes. Using a fluorescence resonance energy transfer assay, we examined the rate and mechanism of transfer of anthroyloxy-fatty acid analogs a) from IFABP to phospholipid membranes of different composition; b) from chemically modified IFABPs, in which the acetylation of surface lysine residues eliminated positive surface charges; and c) as a function of ionic strength. The results show clearly that negative charges on the membrane surface and positive charges on the protein surface are important for establishing the "collisional complex", during which fatty acid transfer occurs. In addition, changes in the hydrophobicity of the protein surface, as well as the hydrophobic volume of the acceptor vesicles, also influenced the rate of fatty acid transfer. Thus, ionic interactions between IFABP and membranes appear to play a primary role in the process of fatty acid transfer to membranes, and hydrophobic interactions can also modulate the rates of ligand transfer.  相似文献   

15.
The contribution of indirect action mediated by OH radicals to cell inactivation by ionizing radiations was evaluated for photons over the energy range from 12.4 keV to 1.25 MeV and for heavy ions over the linear energy transfer (LET) range from 20 keV/microm to 440 keV/microm by applying competition kinetics analysis using the OH radical scavenger DMSO. The maximum level of protection provided by DMSO (the protectable fraction) decreased with decreasing photon energy down to 63% at 12.4 keV. For heavy ions, a protectable fraction of 65% was found for an LET of around 200 keV/microm; above that LET, the value stayed the same. The reaction rate of OH radicals with intracellular molecules responsible for cell inactivation was nearly constant for photon inactivation, while for the heavy ions, the rate increased with increasing LET, suggesting a reaction with the densely produced OH radicals by high-LET ions. Using the protectable fraction, the cell killing was separated into two components, one due to indirect action and the other due to direct action. The inactivation efficiency for indirect action was greater than that for direct action over the photon energy range and the ion LET range tested. A significant contribution of direct action was also found for the increased RBE in the low photon energy region.  相似文献   

16.
The phosphatidylcholine exchange protein from bovine liver catalyzes the transfer of phosphatidylcholine between rat liver mitochondria and sonicated liposomes. The effect of changes in the liposomal lipid composition and ionic composition of the medium on the transfer have been determined. In addition, it has been determined how these changes affected the electrophoretic mobility i.e. the surface charge of the membrane particles involved. Transfer was inhibited by the incorporation of negatively charged phosphatidic acid, phosphatidylserine, phosphatidylglycerol and phosphatidylinositol into the phosphatidylcholine-containing vesicles; zwitterionic phosphatidyl-ethanolamine had much less of an inhibitory effect while positively charged stearylamine stimulated. The cation Mg2+ and, to a lesser extent, K+ overcame the inhibitory effect exerted by phosphatidic acid, in that concentration range where these ions neutralized the negative surface charge most effectively. Under conditions where Mg2+ and K+ affected the membrane surface charge relatively little inhibition was observed. In measuring the protein-mediated transfer between a monolayer and vesicles consisting of only phosphatidylcholine, cations inhibited the transfer in the order La3+ greater than Mg2+ larger than or equal to Ca2+ greater than K+ = Na+. Inhibition was not related to the ionic strength, and very likely reflects an interference of these cations with an electrostatic interaction between the exchange protein and the polar head group of phosphatidylcholine.  相似文献   

17.
Proton NMR intensity and differential scanning calorimetry measurements were carried out on an intrinsically unstructured late embryogenesis abundant protein, ERD10, the globular BSA, and various buffer solutions to characterize water and ion binding of proteins by this novel combination of experimental approaches. By quantifying the number of hydration water molecules, the results demonstrate the interaction between the protein and NaCl and between buffer and NaCl on a microscopic level. The findings overall provide direct evidence that the intrinsically unstructured ERD10 not only has a high hydration capacity but can also bind a large amount of charged solute ions. In accord, the dehydration stress function of this protein probably results from its simultaneous action of retaining water in the drying cells and preventing an adverse increase in ionic strength, thus countering deleterious effects such as protein denaturation.  相似文献   

18.
To understand the key determinants in calcium-binding affinity, a calcium-binding site with pentagonal bipyramid geometry was designed into a non-calcium-binding protein, domain 1 of CD2. This metal-binding protein has five mutations with a net charge in the coordination sphere of -5 and is termed DEEEE. Fluorescence resonance energy transfer was used to determine the metal-binding affinity of DEEEE to the calcium analog terbium. The addition of protein concentration to Tb(III) solution results in a large enhancement of Tb(III) fluorescence due to energy transfer between terbium ions and aromatic residues in CD2-D1. In addition, both calcium and lanthanum compete with terbium for the same desired metal binding pocket. Our designed protein exhibits a stronger affinity for Tb(III), with a K(d) of 21 microM, than natural calcium-binding proteins with a similar Greek key scaffold.  相似文献   

19.
E E Snyder  B W Buoscio  J J Falke 《Biochemistry》1990,29(16):3937-3943
The molecular mechanisms by which protein Ca(II) sites selectively bind Ca(II) even in the presence of high concentrations of other metals, particularly Na(I), K(I), and Mg(II), have not been fully described. The single Ca(II) site of the Escherichia coli receptor for D-galactose and D-glucose (GGR) is structurally related to the eukaryotic EF-hand Ca(II) sites and is ideally suited as a model for understanding the structural and electrostatic basis of Ca(II) specificity. Metal binding to the bacterial site was monitored by a Tb(III) phosphorescence assay: Ca(II) in the site was replaced with Tb(III), which was then selectively excited by energy transfer from protein tryptophans. Photons emitted from the bound Tb(III) enabled specific detection of this substrate; for other metals binding was detected by competitive displacement of Tb(III). Representative spherical metal ions from groups IA, IIA, and IIIA and the lanthanides were chosen to study the effects of metal ion size and charge on the affinity of metal binding. A dissociation constant was measured for each metal, yielding a range of KD's spanning over 6 orders of magnitude. Monovalent metal ions of group IA exhibited very low affinities. Divalent group IIA metal ions exhibited affinities related to their size, with optimal binding at an effective ionic radius between those of Mg(II) (0.81 A) and Ca(II) (1.06 A). Trivalent metal ions of group IIIA and the lanthanides also exhibited size-dependent affinities, with an optimal effective ionic radius between those of Sc(III) (0.81 A) and Yb(III) (0.925 A). The results indicate that the GGR site selects metal ions on the basis of both charge and size.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The composition and electrolyte concentration of the aqueous bathing environment have important consequences for many biological processes and can profoundly affect the behavior of biomolecules. Nevertheless, because of computational limitations, many molecular simulations of biophysical systems can be performed only at specific ionic conditions: either at nominally zero salt concentration, i.e., including only counterions enforcing the system’s electroneutrality, or at excessive salt concentrations. Here, we introduce an efficient molecular dynamics simulation approach for an atomistic DNA molecule at realistic physiological ionic conditions. The simulations are performed by employing the open-boundary molecular dynamics method that allows for simulation of open systems that can exchange mass and linear momentum with the environment. In our open-boundary molecular dynamics approach, the computational burden is drastically alleviated by embedding the DNA molecule in a mixed explicit/implicit salt-bathing solution. In the explicit domain, the water molecules and ions are both overtly present in the system, whereas in the implicit water domain, only the ions are explicitly present and the water is described as a continuous dielectric medium. Water molecules are inserted and deleted into/from the system in the intermediate buffer domain that acts as a water reservoir to the explicit domain, with both water molecules and ions free to enter or leave the explicit domain. Our approach is general and allows for efficient molecular simulations of biomolecules solvated in bathing salt solutions at any ionic strength condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号