首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding and uptake of cholesterol enriched lipoproteins by isolated hepatocytes was decreased at 16 hours after partial hepatectomy, with a tendency to return to control values as the regeneration proceeds. The number of lipoprotein binding sites of total cellular membranes remained similar to control at 16 and 24 hours. The plasma lipoprotein pattern, determined by electrophoretic analysis, showed a lower per cent of very low density lipoproteins (VLDL) and a higher per cent of low density lipoproteins (LDL) at 16 and 24 hours post-partial hepatectomy. At these times, plasma lecithin: cholesterol acyltransferase (LCAT) activity was decreased. It is intriguing to suggest that the regenerating liver could regulated the blood lipoprotein pattern and the uptake of lipoproteins by modulating the surface expression of the receptors.  相似文献   

2.
Growing clinical evidence suggests that metabolic behavior and atherogenic potential vary within lipoprotein subclasses that can be defined by apolipoprotein variation. Variant constituency of apolipoproteins B and E (apoB and apoE) may be particularly important because of the central roles of these apolipoproteins in the endogeneous lipid delivery cascade. ApoB is the sole protein of low-density lipoprotein (LDL), and like LDL cholesterol, the plasma apoB level has been positively correlated with risk for atherosclerotic disease. ApoE is a major functional lipoprotein in the triglyceride-rich lipoproteins, and may be crucial in the conversion of very low density lipoprotein (VLDL) to LDL. Based on work by others that enabled the quantititation of apoB-containing particles by content of up to two other types of apolipoprotein, we have developed a method for determining the amount of apoE in apoB-containing lipoproteins (Lp B:E) and the amount of apoB in apoE-containing lipoproteins (Lp E:B). From the Lp B:E and Lp E:B concentrations, the molar ratio of apoE to apoB in lipoproteins containing apoB and/or apoE in plasma can be determined. The methodology is fast, specific, and sensitive and should prove extremely useful in further categorizing lipoproteins and characterizing their behavior. In applying this method to clinical groupings of normo- and hyperlipidemia, we found that the plasma triglyceride level correlated with the apoE and Lp B:E concentrations in plasma, while the total cholesterol level correlated with the apoB and Lp E:B levels.  相似文献   

3.
Very low-density lipoprotein (VLDL) is the main plasma carrier of triacylglycerol that is elevated in pathological conditions such as diabetes, metabolic syndrome, obesity and dyslipidemia. How variations in triacylglycerol levels influence structural stability and remodeling of VLDL and its metabolic product, low-density lipoproteins (LDL), is unknown. We applied a biochemical and biophysical approach using lipoprotein remodeling by lipoprotein lipase and cholesterol ester transfer protein, along with thermal denaturation that mimics key aspects of lipoprotein remodeling in vivo. The results revealed that increasing the triacylglycerol content in VLDL promotes changes in the lipoprotein size and release of the exchangeable apolipoproteins. Similarly, increased triacylglycerol content in LDL promotes lipoprotein remodeling and fusion. These effects were observed in single-donor lipoproteins from healthy subjects enriched in exogenous triolein, in single-donor lipoproteins from healthy subjects with naturally occurring differences in endogenous triacylglycerol, and in LDL and VLDL from pooled plasma of diabetic and normolipidemic patients. Consequently, triacylglycerol-induced destabilization is a general property of plasma lipoproteins. This destabilization reflects a direct effect of triacylglycerol on lipoproteins. Moreover, we show that TG can act indirectly by increasing lipoprotein susceptibility to oxidation and lipolysis and thereby promoting the generation of free fatty acids that augment fusion. These in vitro findings are relevant to lipoprotein remodeling and fusion in vivo. In fact, fusion of LDL and VLDL enhances their retention in the arterial wall and, according to the response-to-retention hypothesis, triggers atherosclerosis. Therefore, enhanced fusion of triacylglycerol-rich lipoproteins suggests a new causative link between elevated plasma triacylglycerol and atherosclerosis.  相似文献   

4.
Monocytes are recruited from the circulation into the subendothelial space where they differentiate into mature macrophages and internalize modified lipoproteins to become lipid-laden foam cells. The accumulation of monocytes is mediated by the interaction of locally produced chemoattractant protein-1 (MCP-1) with its receptor CCR2. The objective of the present study is to demonstrate the differential effects of plasma lipoproteins on monocyte CCR2 expression. The CCR2 expression was increased about 2.4-fold in monocytes isolated from hypercholesterolemic patients, compared to monocytes from normal controls. There was a significant correlation between CCR2 expression and plasma low density lipoprotein (LDL). Elevated levels of high density lipoprotein (HDL) blunted and even reverted the effects of LDL on CCR2 expression, both in vivo and in vitro. The causal relationship between plasma lipoproteins and CCR2 expression was further confirmed by modulating the lipoprotein profile. Estrogen supplement therapy decreased plasma LDL cholesterol, increased plasma HDL cholesterol, and reduced CCR2 expression in hypercholesterolemic postmenopausal women, but had no effect on the plasma lipid profile or CCR2 expression in normocholesterolemic subjects. The physiological significance of altered CCR2 expression was tested by chemotaxis assay, and our results demonstrated that treatment of THP-1 monocytes with LDL induced CCR2 expression and substantially enhanced the chemotaxis elicited by MCP-1. Our findings suggest that plasma lipoproteins differentially control monocyte function and that monocytes from hypercholesterolemic subjects are hyperresponsive to chemotactic stimuli. This may increase their accumulation in the vessel wall and accelerate the pathogenic events of atherogenesis.  相似文献   

5.
Three fractionation procedures (immunoaffinity chromatography, two-dimensional nondenaturing electrophoresis, and heparin-agarose affinity chromatography) have been compared in determining the kinetics of free and ester cholesterol transfer in normolipemic native plasma. Similar results were obtained in each case. Cell-derived free cholesterol is initially enriched in high density lipoproteins (HDL) (mainly HDL without apoE); at longer time periods (greater than 10 min) greater proportions are observed in very low density lipoproteins (VLDL) and low density lipoproteins (LDL). The major part of cholesteryl ester (about 90%) was retained in HDL, while VLDL and LDL, which contained about 75% of total cholesteryl ester mass, received only about 10% of cell-derived cholesteryl ester. Within HDL, almost all cholesteryl ester was in the apoE-free fraction. These data provide evidence that lipoprotein free and esterified cholesterol are not at chemical equilibrium in normal plasma, and that cell-derived cholesterol is preferentially directed to HDL. The techniques used had a comparable effectiveness for the rapid fractionation of labile lipoprotein lipid radioactivity.  相似文献   

6.
在兔主动脉平滑肌细胞 ( SMC)培养基中分别加入正常低密度脂蛋白 ( N- LDL)、氧化低密度脂蛋白 ( ox- LDL)、正常极低密度脂蛋白 ( N- VLDL)、氧化极低密度脂蛋白 ( ox- VLDL)和 β-极低密度脂蛋白 (β- VLDL )培养 2 4 h后 ,用定量 RT- PCR和配体结合实验检测平滑肌细胞 LRP的m RNA和蛋白质水平的表达 .结果表明 :五种脂蛋白均能在转录和翻译水平诱导兔主动脉平滑肌细胞的 LRP表达 ,尤以富含胆固醇的 N- LDL ,ox- LDL和β- VLDL的刺激作用更明显 .用胆固醇单独或与脂蛋白共同温育 SMC后 ,发现胆固醇本身可促进 SMC的 LRP蛋白水平的表达 ,脂蛋白与胆固醇的共同刺激作用更为显著 .结果提示 :上述五种脂蛋白对 SMC上 LRP的表达有上调作用 ,其机制可能主要是通过其中的胆固醇来实现的 .  相似文献   

7.
We examined whether postprandial (PP) chylomicrons (CMs) can serve as vehicles for transporting cholesterol from endogenous cholesterol-rich lipoprotein (LDL+HDL) fractions and cell membranes to the liver via lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) activities. During incubation of fresh fasting and PP plasma containing [(3)H]cholesteryl ester (CE)-labeled LDL+HDL, both CMs and VLDL served as acceptors of [(3)H]CE or cholesterol from LDL+HDL. The presence of CMs in PP plasma suppressed the ability of VLDL to accept [(3)H]CE from LDL+HDL. In reconstituted plasma containing an equivalent amount of triglycerides from isolated VLDL or CMs, a CM particle was about 40 times more potent than a VLDL particle in accepting [(3)H]CE or cholesterol from LDL+HDLs. When incubated with red blood cells (RBCs) as a source for cell membrane cholesterol, the cholesterol content of CMs, VLDL, LDL, and HDL in PP plasma increased by 485%, 74%, 13%, and 30%, respectively, via LCAT and CETP activities. The presence of CMs in plasma suppressed the ability of endogenous lipoproteins to accept cholesterol from RBCs. Our data suggest that PP CMs may play an important role in promoting reverse cholesterol transport in vivo by serving as the preferred ultimate vehicle for transporting cholesterol released from cell membranes to the liver via LCAT and CETP.  相似文献   

8.
Animals of various species are widely used as models with which to study atherosclerosis and the lipoprotein metabolism. The objective of this study was to investigate the lipoprotein profiles in Wistar rats and New Zealand white rabbits with experimentally induced hyperlipidemia by means of ultracentrifugation. The Schlieren curves were utilized to compare suckling and adult rat sera to determine whether aging causes alterations in lipoprotein profiles. A striking feature of the data is the high concentration of low-density lipoproteins (LDL), (>5.2 mmol/l cholesterol) in the 2-week old rat serum pool which was greatly decreased in the 3-weeks rat serum pool (<1.3 mmol/l cholesterol). Additional experiments were performed to permit a direct comparison of the amounts of lipoprotein present in rat sera in experimental hyperlipidemia post-Triton WR 1339 administration. Rapid changes in concentrations in very low-density lipoproteins (VLDL), LDL and high-density lipoproteins (HDL) were observed after Triton injection. The administration of Triton WR 1339 to fasted rats resulted in an elevation of serum cholesterol levels. Triton physically alters VLDL, rendering them refractive to the action of lipolytic enzymes in the blood and tissues, preventing or delaying their removal from the blood. Whereas the VLDL concentration was increased markedly, those of LDL and HDL were decreased at 20 h after Triton treatment. Rabbits were fed a diet containing 2% cholesterol for 60 days to develop hyperlipidemia and atheromatous aortic plaques. A combination of preparative and analytical ultracentrifugation was used to investigate of LDL aliquots, to prepare radioactive-labeled lipoproteins and to study induced hyperlipidemia in rabbits. Analytical ultracentrifugation was applied to investigate the LDL flotation peaks before and after cholesterol feeding of rabbits. Modified forms of LDL were detected in the plasma of rabbits with experimentally induced atherosclerosis. ApoB-containing particles, migrating as LDL, intermediate density lipoproteins and VLDL were the most abundant lipoproteins. Gamma camera in vivo scintigraphy on rabbits with radiolabeled lipoproteins revealed visible signals corresponding to atherosclerotic plaques of the aorta and carotid arteries.  相似文献   

9.
Male squirrel monkeys fed ethanol (ETOH) at variable doses were used to determine whether alcohol modifies levels of plasma low density lipoproteins (LDL) in addition to increasing high density lipoproteins (HDL). Because we earlier showed that high alcohol consumption enhances lipoprotein cholesterol synthesis, experiments were also performed to further assess whether ETOH alters lipoprotein clearance and plasma transfer processes in vivo. Monkeys were divided into three groups: Controls fed isocaloric liquid diet; and Low and High ETOH animals fed liquid diet with vodka substituted isocalorically for carbohydrate at 12 and 24 of the calories, respectively. High ETOH primates had significantly more LDL lipid and protein while serum glutamate oxaloacetate transaminase was similar for the three groups. Although removal of 3H LDL cholesteryl ester (CE) from the plasma compartment was not affected by dietary ETOH, transfer of LDL CE to HDL was impaired in the High ETOH group suggesting a mechanism for the enlarged circulating pool of LDL. Transfer of 14C HDL CE to lower density lipoproteins was similar for the three groups. However, ETOH at both doses delayed clearance of radiolabeled HDL CE from circulation. Thus besides enhancing synthesis of lipoproteins, ETOH at a moderately high dose (24% of calories) influences lipoprotein levels in primates by modifying lipid transfer processes (LDL) as well as by altering clearance (HDL) without adversely affecting liver function.  相似文献   

10.
Elevated activity of 3-hydroxy-3-methyglutaryl coenzyme A reductase (HMG-CoA reductase) was observed in the rabbit ovary and corpus luteum during pregnancy. Based on this study, it was proposed that de novo cholesterol synthesis rather than the uptake of exogenous plasma cholesterol (lipoproteins) was of primary importance in providing steroid substrate for progesterone synthesis by the rabbit luteal cell. Using a perifusion system, the present study challenges this hypothesis by demonstrating that both low- and high-density lipoproteins (at protein concentrations of 100 micrograms/ml and 50 micrograms/ml, respectively) were able to acutely stimulate progesterone production by dissociated rabbit luteal cells. The increase in progesterone synthesis was due to increased cholesterol substrate and not to protein-enhanced progesterone release. The ability of luteal cells to respond to lipoproteins was dependent on both dose- and sequence of treatment, with high-density lipoprotein (HDL) being unable to stimulate progesterone production if preceded by perifusion with low-density lipoprotein (LDL) or HDL. In addition, 17 beta-estradiol appeared to regulate lipoprotein utilization by attenuating the LDL response after 1 h of perifusion. We conclude that lipoproteins may provide cholesterol substrate for progesterone biosynthesis in vitro and that 17 beta-estradiol, in addition to maintaining progesterone production by luteal cells, may also regulate lipoprotein utilization. Thus, maintenance of steady progesterone secretion in response to estradiol supercedes that of LDL-stimulated progesterone secretion by rabbit luteal cells in vitro. This study suggests an interaction between estrogen and lipoproteins that may prove physiologically important in regulating progesterone production by rabbit luteal cells in vivo.  相似文献   

11.
Rabbits fed a wheat starch-casein diet develop a marked hypercholesterolemia with a lipoprotein distribution similar to that of humans. Approximately 76% of the total cholesterol is carried in the low density lipoprotein (LDL) fraction (1.006 less than d less than 1.063 g/ml). Inclusion of 1% cholestyramine in the diet prevents the increase in plasma cholesterol. The cholestyramine effect is mediated through an increased fractional catabolic rate of 125I-LDL. In order to determine the potential role of hepatic LDL receptors in the removal of LDL from the plasma, binding of 125I-LDL and 125I-beta-VLDL (beta-migrating very low density lipoproteins) to hepatic membranes prepared from livers of rabbits fed the wheat starch-casein diet with or without cholestyramine supplementation was investigated. Membranes from livers of the cholestyramine-supplemented animals exhibit high levels of specific EDTA-sensitive binding of either of the 125I-labeled lipoproteins. Very little EDTA-sensitive binding occurs on liver membranes from wheat starch-casein-fed rabbits that have not been treated with cholestyramine. These results indicate that the hypercholesterolemia in rabbits associated with the wheat starch-casein diet is wholly or partially the result of a decreased number of specific hepatic LDL receptors and thus a decreased catabolism of plasma cholesterol. The response of the liver to the inclusion in the diet of the bile acid sequestrant, cholestyramine, is to maintain or increase the number of specific LDL binding sites, thus promoting catabolism of plasma cholesterol.  相似文献   

12.
Dietary cholesterol induces a hemolytic anemia in guinea pigs, accompanied by changes in the lipid composition of red cells and of plasma lipoproteins. This report presents a characterization of the lipoprotein species present in each main density class in both control and cholesterol-fed guinea pigs. Traces of a typical high density lipoprotein (HDL) were detected in control plasma. HDL from cholesterol-fed, anemic guinea pigs differed from control HDL in electron microscopic appearance and lipid and peptide composition. Long stacks of discs were observed in the electron microscope in addition to smaller, spherical particles characteristic of control HDL. Low density lipoproteins (LDL) from cholesterol-fed, anemic guinea pigs had two main populations, which were separated by gel chromatography. One population appeared in the electron microscope as large transparent discs and contained mainly unesterified cholesterol and phospholipids in a 2:1 molar ratio. The other population resembled control LDL in size and composition except for its high unesterified cholesterol content. Dietary cholesterol also altered the composition and decreased the electrophoretic mobility of very low density lipoproteins. Gel electrophoretic and immunochemical evidence indicates that a peptide (mol wt 35,000) appears in lipoproteins from cholesterol-fed, anemic guinea pigs that is undetectable in those of controls. Similarities between the cholesterol-induced lipoprotein abnormalities in guinea pigs and those reported in patients with obstructive jaundice, biliary cirrhosis, type III hyperlipoproteinemia, or familial lecithin:cholesterol acyltransferase deficiency are discussed.  相似文献   

13.
Recognition of low density lipoprotein (LDL) by human adipocytes is not dependent on the classical LDL (apoprotein B-E) receptor. To assess whether LDL phospholipids have a role in adipocyte-LDL interactions, binding studies were carried out with human LDL modified with cobra venom phospholipase A2 (PLA2) and freshly isolated adipocytes and purified adipocyte plasma membranes prepared from surgical biopsies. LDL incubated with PLA2 showed increased monoacylphospholipid content, decreased diacylphospholipid content, and increased anodic migration on agarose gel electrophoresis. LDL cholesterol, triglyceride, and protein content remained unchanged. Typically, modification of 16 and 47% of LDL phospholipids enhanced specific binding of 125I-labelled LDL to plasma membranes progressively from 3.1 micrograms LDL bound/mg membrane protein (control) to 5.8 and 28.2 micrograms LDL bound/mg membrane protein, respectively. Nonspecific binding was not altered significantly. Excess unlabelled native LDL and high density lipoprotein (HDL3) effectively inhibited binding of PLA2-modified LDL. Freshly isolated adipocytes also showed enhanced binding and uptake of PLA2-modified LDL (0.1 vs. 0.9 micrograms LDL/10(6) cells x 2 h), control vs. modified). The results demonstrate that alterations of LDL phospholipids significantly enhance LDL binding and suggest a regulatory role for phospholipids in lipoprotein-cell interaction. Furthermore, the results support the view that human adipose tissue may be involved in the metabolism of modified lipoproteins, in vivo.  相似文献   

14.
These studies were conducted to determine the effects of exercise training on plasma lipoprotein levels and metabolism in the guinea pig to evaluate potential utilization of this model for studies of exercise-mediated effects on the regulation of sterol and lipoprotein metabolism and atherosclerosis regression. Male guinea pigs (n = 5 per group) were randomly assigned to either a control or an exercise group. The exercise protocol consisted of a 7-week training program, 5 days/wk on a rodent treadmill. Final speed and duration were 33 meters/min for 30–40 min per session. Guinea pigs in the exercise group had 33% lower plasma triacylglycerol concentrations (P < 0.01), 66% higher HDL cholesterol levels (P < 0.05) and 31% lower plasma free fatty acids (P < 0.05) than guinea pigs from the non-exercised group. In addition, lipoprotein lipase activity in the heart was 50% higher (P < 0.025) in guinea pigs allocated to the exercise protocol. Exercise training resulted in modifications in composition and size of lipoproteins. The concentrations of free cholesterol in LDL and HDL were higher in the exercised guinea pigs. The LDL peak density values were lower in guinea pigs from the exercise group compared to controls suggesting that exercise training resulted in larger LDL particles. In contrast, no significant effects due to exercise were observed in hepatic cholesterol concentrations, hepatic HMG-CoA reductase activity or LDL binding to guinea pig hepatic membranes. These data indicate that exercise had a more pronounced effect on the intravascular processing of lipoproteins than on hepatic cholesterol metabolism. In addition, the pattern of changes in guinea pig lipoprotein metabolism, in response to exercise training, was similar to reported effects in humans.  相似文献   

15.
Although low-density lipoprotein (LDL) receptor-mediated cholesterol uptake through clathrin-coated pits is now well understood, the molecular details and organizing principles for selective cholesterol uptake/efflux (reverse cholesterol transport, RCT) from peripheral cells remain to be resolved. It is not yet completely clear whether RCT between serum lipoproteins and the plasma membrane occurs primarily through lipid rafts/caveolae or from non-raft domains. To begin to address these issues, lipid raft/caveolae-, caveolae-, and non-raft-enriched fractions were resolved from purified plasma membranes isolated from L-cell fibroblasts and MDCK cells by detergent-free affinity chromatography and compared with detergent-resistant membranes isolated from the same cells. Fluorescent sterol exchange assays between lipoproteins (VLDL, LDL, HDL, apoA1) and these enriched domains provided new insights into supporting the role of lipid rafts/caveolae and caveolae in plasma membrane/lipoprotein cholesterol dynamics: (i) lipids known to be translocated through caveolae were detected (cholesteryl ester, triacylglycerol) and/or enriched (cholesterol, phospholipid) in lipid raft/caveolae fractions; (ii) lipoprotein-mediated sterol uptake/efflux from lipid rafts/caveolae and caveolae was rapid and lipoprotein specific, whereas that from non-rafts was very slow and independent of lipoprotein class; and (iii) the rate and lipoprotein specificity of sterol efflux from lipid rafts/caveolae or caveolae to lipoprotein acceptors in vitro was slower and differed in specificity from that in intact cells-consistent with intracellular factors contributing significantly to cholesterol dynamics between the plasma membrane and lipoproteins.  相似文献   

16.
Oral nicotine induces an atherogenic lipoprotein profile   总被引:3,自引:0,他引:3  
Male squirrel monkeys were used to evaluate the effect of chronic oral nicotine intake on lipoprotein composition and metabolism. Eighteen yearling monkeys were divided into two groups: 1) Controls fed isocaloric liquid diet; and 2) Nicotine primates given liquid diet supplemented with nicotine at 6 mg/kg body wt/day. Animals were weighed biweekly, plasma lipid, glucose, and lipoprotein parameters were measured monthly, and detailed lipoprotein composition, along with postheparin plasma lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) activity, was assessed after 24 months of treatment. Although nicotine had no effect on plasma triglyceride or high density lipoproteins (HDL), the alkaloid caused a significant increase in plasma glucose, cholesterol, and low density lipoprotein (LDL) cholesterol plus protein while simultaneously reducing the HDL cholesterol/plasma cholesterol ratio and animal body weight. Levels of LDL precursors, very low density (VLDL) and intermediate density (IDL) lipoproteins, were also lower in nicotine-treated primates while total postheparin lipase (LPL + HTGL) activity was significantly elevated. Our data indicate that long-term consumption of oral nicotine induces an atherogenic lipoprotein profile (increases LDL, decreases HDL/total cholesterol ratio) by enhancing lipolytic conversion of VLDL to LDL. These results have important health implications for humans who use smokeless tobacco products or chew nicotine gum for prolonged periods.  相似文献   

17.
The role of the plasma lecithin:cholesterol acyltransferase reaction in the esterification of the cholesterol of human and baboon plasma high density lipoproteins has been studied. Human plasma was incubated in vitro, and the initial rate of cholesterol esterification in lipoprotein fractions obtained by chromatography on hydroxylapatite was determined. The rate of esterification was greater in the high density lipoprotein fraction than in the low density lipoprotein fraction. High density lipoproteins from human and baboon plasma were filtered through columns of Sephadex G 200, and the relative concentrations in the effluent of key lipids involved in the acyltransferase reaction were determined. The ratio of esterified to unesterified cholesterol varied across the lipoprotein peak obtained from either type of plasma. The relative concentration of lecithin compared to sphingomyelin also varied across the peaks obtained with human high density lipoproteins. When human or baboon plasma was incubated with cholesterol-(14)C and the high density lipoproteins were filtered through Sephadex, the specific activity of the esterified cholesterol varied across the lipoprotein peak. Similar results were obtained when plasma esterified cholesterol was labeled in vivo by the injection of labeled mevalonate into baboons. The data suggest that the acyltransferase reaction is the major source of the esterified cholesterol of the high density lipoproteins.  相似文献   

18.
Morphological characteristics of the interaction of low density lipoproteins (LDL) and acetylated low density lipoproteins (AcLDL) with rat liver cells are described. These liver cell types are mainly responsible for the catabolism of these lipoproteins in vivo. Isolated rat liver Kupffer, endothelial, and parenchymal cells were incubated with LDL or AcLDL conjugated to 20 nm colloidal gold. LDL was mainly internalized by Kupffer cells, whereas AcLDL was predominantly found in endothelial cells. Kupffer and endothelial cells displayed different morphological characteristics in the processing of these lipoproteins. Kupffer cells bound LDL at uncoated regions of the plasma membrane often at the base of pseudopodia, and internalized the particles via small smooth vesicles. These uptake characteristics differ from the classical LDL uptake pathway, as described for other cell types, and may be related to the unique recognition properties of the receptor of Kupffer cells as observed in biochemical studies. Liver endothelial cells bound AcLDL in coated pits, followed by rapid uptake. Uptake proceeded through small coated vesicles, and after 5 min of incubation large (600-1200 nm) electron-lucent vacuoles (endosomes) with AcLDL-gold particles arranged along the membrane region were present. The endosomes were often associated closely with the cell membrane which might enable direct recycling of AcLDL receptors. These observations might explain the high efficiency of these cells in the processing of modified LDL in vivo.  相似文献   

19.
Enzymatic and lipid transfer reactions involved in reverse cholesterol transport were studied in healthy and lecithin:cholesterol acyltransferase (LCAT), deficient subjects. Fasting plasma samples obtained from each individual were labeled with [3H]cholesterol and subsequently fractionated by gel chromatography. The radioactivity patterns obtained corresponded to the elution volumes of the three major ultracentrifugally isolated lipoprotein classes (very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)). In healthy subjects, the LCAT activity was consistently found in association with the higher molecular weight portion of HDL. Similar observations were made when exogenous purified LCAT was added to the LCAT-deficient plasma prior to chromatography. Incubation of the plasma samples at 37 degrees C resulted in significant reduction of unesterified cholesterol (FC) and an increase in esterified cholesterol (CE). Comparison of the data of FC and CE mass measurements of the lipoprotein fractions from normal and LCAT-deficient plasma indicates that: (i) In normal plasma, most of the FC for the LCAT reaction originates from LDL even when large amounts of FC are available from VLDL. (ii) The LCAT reaction takes place on the surface of HDL. (iii) The product of the LCAT reaction (CE) may be transferred to either VLDL or LDL although VLDL appears to be the preferred acceptor when present in sufficient amounts. (iv) CE transfer from HDL to lower density lipoproteins is at least partially impaired in LCAT-deficient patients. Additional studies using triglyceride-rich lipoproteins indicated that neither the capacity to accept CE from HDL nor the lower CE transfer activity were responsible for the decreased amount of CE transferred to VLDL and chylomicrons in LCAT-deficient plasma.  相似文献   

20.
The whole lipoprotein spectrum of human plasma may be divided into atherosclerotic and anti-atherosclerotic lipoproteins. To the first class belong apolipoprotein (apo) B and some apoE-containing lipoproteins of the very-low-density (VLDL), intermediate-density (IDL) and low-density (LDL) lipoprotein fractions. Anti-atherosclerotic lipoproteins are apoA-containing high-density lipoproteins (HDL). Circulating plasma lipoproteins are catabolized mainly by specific cell surface receptors (R) which react with apoB and apoE (B/E-R), for apoE (E-R) or for apoA (HDL-R). Whereas the B/E-R and E-R are responsible for the cellular uptake of lipoproteins and their lipid load by various organs, HDL-R are thought to promote lipid (cholesterol) efflux. There is an additional class of lipoprotein receptors, the so called scavenger-R which are responsible for the removal of altered or degraded lipoproteins for the circulation. Under normal physiological conditions, the concerted action of these receptors warrants efficient lipoprotein turnover and direction into target organs. Derangements of this system, however, may lead to the deposition and accumulation of atherogenic lipids, notably free cholesterol (FC) and cholesteryl esters (CE) in arterial tissue causing atherosclerosis and cardiac death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号