首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phylogenetic and barcoding studies usually use fresh plant tissues as sources of DNA and have successfully amplified DNA for various loci. The use of dried samples, however, is often necessary due to the frequent inaccessibility of fresh rare plants or their parts for genetic analyses or barcoding. The difficulty in obtaining amplifiable DNA is a major restriction of the use of herbarium specimens for DNA analyses. Recent study has highlighted the crucial issues for comparing herbarium and fresh plants for barcoding. We analysed the performance of samples of the family Juncaceae from various herbarium specimens of different ages with fresh plant material in PCRs and the sequences of seven loci (rbcL, rpoC1, trnL-F intergenic spacer, trnL intron, and psbA-trnH from chloroplast DNA; atp1 from mitochondrial DNA; and ITS1-5.8S-ITS2 from nuclear DNA) using a combination of 28 primers. The herbarium specimens amplified well and may thus be successfully applied for both phylogenetic analyses and barcoding for the Juncaceae family. Amplifying DNA was more difficult from dried herbarium specimens than fresh samples but could be successful in most cases when appropriate internal primers were designed or methods were optimised. Using the set of universal primers recommended by the Consortium for the Barcode of Life and designing specific primers for a particular group of interest were both useful. Specimen age and amplicon length had limited detrimental effects on amplification success for most of the Juncaceae loci tested.  相似文献   

2.

Background

Chloroplast-encoded genes (matK and rbcL) have been formally proposed for use in DNA barcoding efforts targeting embryophytes. Extending such a protocol to chlorophytan green algae, though, is fraught with problems including non homology (matK) and heterogeneity that prevents the creation of a universal PCR toolkit (rbcL). Some have advocated the use of the nuclear-encoded, internal transcribed spacer two (ITS2) as an alternative to the traditional chloroplast markers. However, the ITS2 is broadly perceived to be insufficiently conserved or to be confounded by introgression or biparental inheritance patterns, precluding its broad use in phylogenetic reconstruction or as a DNA barcode. A growing body of evidence has shown that simultaneous analysis of nucleotide data with secondary structure information can overcome at least some of the limitations of ITS2. The goal of this investigation was to assess the feasibility of an automated, sequence-structure approach for analysis of IT2 data from a large sampling of phylum Chlorophyta.

Methodology/Principal Findings

Sequences and secondary structures from 591 chlorophycean, 741 trebouxiophycean and 938 ulvophycean algae, all obtained from the ITS2 Database, were aligned using a sequence structure-specific scoring matrix. Phylogenetic relationships were reconstructed by Profile Neighbor-Joining coupled with a sequence structure-specific, general time reversible substitution model. Results from analyses of the ITS2 data were robust at multiple nodes and showed considerable congruence with results from published phylogenetic analyses.

Conclusions/Significance

Our observations on the power of automated, sequence-structure analyses of ITS2 to reconstruct phylum-level phylogenies of the green algae validate this approach to assessing diversity for large sets of chlorophytan taxa. Moreover, our results indicate that objections to the use of ITS2 for DNA barcoding should be weighed against the utility of an automated, data analysis approach with demonstrated power to reconstruct evolutionary patterns for highly divergent lineages.  相似文献   

3.
The biodiversity assessment of different taxa of the genus Caulerpa is of interest from the context of morphological plasticity, invasive potential of some species and biotechnological and pharmacological applications. The present study investigated the identification and molecular phylogeny of different species of Caulerpa occurring along the Indian coast inferred from tufA, rbcL, 18S rDNA and ITS rDNA nucleotide sequences. Molecular data confirmed the identification of 10 distinct Caulerpa species: C. veravalensis, C. verticillata, C. racemosa, C. microphysa, C. taxifolia, C. sertularioides, C. scalpelliformis, C. serrulata, C. peltata and C. mexicana. All datasets significantly supported the sister relationship between C. veravalensis and C. racemosa var. cylindracea. It was also concluded from the results that the specimen identified previously as C. microphysa and C. lentillifera could not be considered as separate species. The molecular data revealed the presence of multiple lineages for C. racemosa which can be resolved into separate species. All four markers were used to ascertain their utility for DNA barcoding. The tufA gene proved a better marker with monophyletic association as the main criteria for identification at the species level. The results also support the use of 18S rDNA insertion sequences to delineate the Caulerpa species through character-based barcoding. The ITS rDNA (5.8S-ITS2) phylogenetic analysis also served as another supporting tool. Further, more sequences from additional Caulerpa specimens will need to be analysed in order to support the role of these two markers (ITS rDNA and 18S insertion sequence) in identification of Caulerpa species. The present study revealed the phylogeny of Caulerpa as complete as possible using the currently available data, which is the first comprehensive report illustrating the molecular phylogeny and barcoding of the genus Caulerpa from Indian waters.  相似文献   

4.
DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment.  相似文献   

5.
The genus Primula is extremely diverse in the east Himalaya-Hengduan Mountains (HHM) in China as a result of rapid radiation. In order to overcome the difficulty of morphological classification of this genus, we surveyed three plastid regions (rbcL, matK, and trnH-psbA) and two nuclear markers (ITS and ITS2) from 227 accessions representing 66 Primula species across 18 sections, to assess their discriminatory power as barcodes. We found that ITS alone or combined with plastid regions showed the best discrimination across different infrageneric ranks and at species level. We suggest rbcL + matK + ITS as the first choice at present to barcode Primula plants. Although the present barcoding combination performed poorly in many closely related species of Primula, it still provided many new insights into current Primula taxonomy, such as the underlying presence of cryptic species, and several potential improper taxonomic treatments. DNA barcoding is one useful technique in the integrative taxonomy of the genus Primula, but it still requires further efforts to improve its effectiveness in some taxonomically challenging groups.  相似文献   

6.
Nuclear sequences of ITS1-5.8S-ITS2 region of rDNA may be an important source of phylogenetically informative data provided that nrDNA is cloned and the character of sequence variation of clones is properly analyzed. nrDNA of selected Taraxacum sections was studied to show sequence variation differences among diploid sexual, tetraploid sexual and polyploid agamospermous species. We examined nucleotide characteristics, substitution pattern, secondary structure, and the phylogenetic utility of ITS1-5.8S-ITS2 from 301 clones of 32 species representing 11 sections. The most divergent sequences of ITS1&2 differed by 17.1% and in 5.8S only by 3.7%. The ITS1-5.8S-ITS2 characteristics, integrity and also stability of secondary structures confirmed that pseudogenes are not responsible for the above variation. The within-individual polymorphism of clones implies that the concerted evolution of ITS cistron of agamospermous polyploid Taraxacum is remarkably suppressed. Sequences of ITS clones proved to be a useful tool for mapping pathways of complex reticulation (polyploid hybridity) in agamospermous Taraxacum.  相似文献   

7.
The canga of the Serra dos Carajás, in Eastern Amazon, is home to a unique open plant community, harboring several endemic and rare species. Although a complete flora survey has been recently published, scarce to no genetic information is available for most plant species of the ironstone outcrops of the Serra dos Carajás. In this scenario, DNA barcoding appears as a fast and effective approach to assess the genetic diversity of the Serra dos Carajás flora, considering the growing need for robust biodiversity conservation planning in such an area with industrial mining activities. Thus, after testing eight different DNA barcode markers (matK, rbcL, rpoB, rpoC1, atpF‐atpH, psbK‐psbI, trnH‐psbA, and ITS2), we chose rbcL and ITS2 as the most suitable markers for a broad application in the regional flora. Here we describe DNA barcodes for 1,130 specimens of 538 species, 323 genera, and 115 families of vascular plants from a highly diverse flora in the Amazon basin, with a total of 344 species being barcoded for the first time. In addition, we assessed the potential of using DNA metabarcoding of bulk samples for surveying plant diversity in the canga. Upon achieving the first comprehensive DNA barcoding effort directed to a complete flora in the Brazilian Amazon, we discuss the relevance of our results to guide future conservation measures in the Serra dos Carajás.  相似文献   

8.
DNA barcoding is a tool that uses a short, standard segment of DNA to identify organisms. In diatoms, a consensus on an appropriate DNA barcode has not been reached, but several markers show promise. These include the 5.8S gene plus a fragment of the internal transcribed spacer 2 (ITS‐2) of nuclear‐encoded ribosomal RNA, a 420‐bp segment of the 18S rRNA gene, and a 748‐bp fragment at the 3′‐end of the ribulose bisophosphate carboxylase large subunit (rbcL) gene. Here, we tested a 540‐bp fragment 417‐bp downstream of the start codon of the rbcL gene for its efficacy in distinguishing diatom species in a wide range of taxa. Overall, 381 sequences representing 66 genera and 245 species from the classes Mediophyceae and Bacillariophyceae were examined. Intra/interspecific thresholds were set at p = 0.01 differences per site (diff./site) for Mediophyceae and p = 0.02 diff./site for Bacillariophyceae and correctly segregated 96% and 93% of morphological congeners, respectively. When testing reproductively isolated or biological species, which are only available from Bacillariophyceae, 80% of species were discriminated. Therefore, we concluded that, alone, the rbcL region tested herein as potential a DNA barcode was not a sufficient discriminator of all diatoms. We suggest that this fragment could be used in a dual‐locus barcode with the more variable 5.8S+ITS‐2 to discriminate species without sufficient interspecific divergences in the tested rbcL region and to provide insight into species identity from a separately evolved genome.  相似文献   

9.
Alper I  Frenette M  Labrie S 《Fungal biology》2011,115(12):1259-1269
The dimorphic yeast Geotrichum candidum (teleomorph: Galactomyces candidus) is commonly used to inoculate washed-rind and bloomy-rind cheeses. However, little is known about the phylogenetic lineage of this microorganism. We have sequenced the complete 18S, 5.8S, 26S ribosomal RNA genes and their internal transcribed spacers (ITS1) and ITS2 regions (5126 nucleotides) from 18 G. candidum strains from various environmental niches, with a focus on dairy strains. Multiple sequence alignments revealed the presence of 60 polymorphic sites, which is generally unusual for ribosomal DNA (rDNA) within a given species because of the concerted evolution mechanism. This mechanism drives genetic homogenization to prevent the divergent evolution of rDNA copies within individuals. While the polymorphisms observed were mainly substitutions, one insertion/deletion (indel) polymorphism was detected in ITS1. No polymorphic sites were detected downstream from this indel site, that is, in 5.8S and ITS2. More surprisingly, many sequence electrophoregrams generated during the sequencing of the rDNA had dual peaks, suggesting that many individuals exhibited intragenomic rDNA variability. The ITS1-5.8S-ITS2 regions of four strains were cloned. The sequence analysis of 68 clones revealed 32 different ITS1-5.8S-ITS2 variants within these four strains. Depending on the strain, from four to twelve variants were detected, indicating that multiple rDNA copies were present in the genomes of these G. candidum strains. These results contribute to the debate concerning the use of the ITS region for barcoding fungi and suggest that community profiling techniques based on rDNA should be used with caution.  相似文献   

10.
English walnut (Juglans regia L.) is the most economically important species from all the 21 species belonging to the genus Juglans and is an important and healthy food as well as base material for timber industry. The aim of this study was to develop a simple technique for specific characterization of English walnut using DNA method. The first and second internal transcribed spacers (ITS1 and ITS2) as well as the intervening 5.8S coding region of the rRNA gene for 18 cultivars of J. regia L. isolated from different geographic origins were characterized. The size of the spacers sequences ranged from 257 to 263 bases for ITS1 and from 217 to 219 bases for ITS2. Variation of GC contents has also been observed and scored as 55–56.7 and 57.1–58.9% for ITS1 and ITS2, respectively. This data exhibited the presence of polymorphism among cultivars. Alignment of the ITS1-5.8S-ITS2 sequences from 18 walnut cultivars showed that there were 244 single nucleotide polymorphisms (SNPs) and 1 short insertion–deletion (indel) at 5′ end ITS1. Amplification refractory mutation system strategy was successfully applied to the SNP markers of the ITS1 and ITS2 sequences for the fingerprinting analysis of 17 on 18 walnut cultivars. The prediction of ITS1 and ITS2 RNA secondary structure from each cultivar was improved by detecting key functional elements shared by all sequences in the alignments. Phylogenetic analysis of the ITS1-5.8S-ITS2 region clearly separated the isolated sequences into two clusters. The results showed that ITS1 and ITS2 region could be used to discriminate these walnut cultivars.  相似文献   

11.
In this study, the variability within the ribosomal DNA region spanning the internal transcribed spacers ITS1 and ITS2 and the 5.8S gene (5.8S-ITS rDNA) was used to differentiate species in the genus Pichia. The 5.8S-ITS rDNA region was PCR-amplified and the PCR product digested with the enzymes CfoI, HinfI, and HaeIII. The variability in the size of the amplified product and in the restriction patterns enabled differentiation between species in the genus Pichia, and between Pichia species and yeast species from other genera in the Yeast-id database (). Moreover, the restriction fragment length polymorphism (RFLP) patterns of the 5.8S-ITS enabled misidentified strains to be detected and revealed genetic heterogeneity between strains within the Pichia membranifaciens and Pichia nakazawae species. Ultimately, the RFLP patterns of the 5.8S-ITS rDNA failed to differentiate between some Pichia and Candida species that could be distinguished on the basis of the sequence of the 5.8S-ITS rRNA region or the sequence of the D1/D2 domain of the 26S rDNA gene.  相似文献   

12.
Martín MP  Lado C  Johansen S 《Mycologia》2003,95(3):474-479
Four new primers were designed, based on comparison of Physarum polycephalum sequences retrieved from Genbank (primers PHYS-5 and PHYS-4) and our own sequences (primers PHYS-3 and PHYS-2), to amplify the ITS regions of rDNA, including the 5.8S gene segment from Lamproderma species. Sequencing analysis shows that Lamproderma contains ITS1-5.8S-ITS2 regions of approximately 900 bp, which is similar in size to most eukaryotes. However, the corresponding region in another common myxomycete, Fuligo septica, is more than 2000 bp due to the presence of large direct-repeat motifs in ITS1. Myxomycete rDNA ITS regions are interesting both as phylogenetic markers in taxonomic studies and as model sequences for molecular evolution.  相似文献   

13.
Metacercariae of two species of Posthodiplostomum Dubois, 1936 (Digenea: Diplostomidae) were subjected to morphological and molecular studies: P. brevicaudatum (von Nordmann, 1832) from Gasterosteus aculeatus (L.) (Gasterosteiformes: Gasterosteidae), Bulgaria (morphology, cox1 and ITS1-5.8S-ITS2) and Perca fluviatilis L. (Perciformes: Percidae), Czech Republic (morphology, cox1, ITS1-5.8S-ITS2 and 28S); and P. centrarchi Hoffman, 1958 from Lepomis gibbosus (L.) (Perciformes: Centrarchidae), Bulgaria (morphology, cox1 and ITS1-5.8S-ITS2) and Slovakia (cox1 and ITS1-5.8S-ITS2). In addition, cercariae of P. cuticola (von Nordmann, 1832) from Planorbis planorbis (L.) (Mollusca: Planorbidae), Lithuania (morphology and cox1) and metacercariae of Ornithodiplostomum scardinii (Schulman in Dubinin, 1952) from Scardinius erythrophthalmus (L.) (Cypriniformes: Cyprinidae), Czech Republic, were examined (morphology, cox1, ITS1-5.8S-ITS2 and 28S). These represent the first molecular data for species of Posthodiplostomum and Ornithodiplostomum Dubois, 1936 from the Palaearctic. Phylogenetic analyses based on cox1 and ITS1-5.8S-ITS2, using O. scardinii as the outgroup and including the three newly-sequenced Posthodiplostomum spp. from Europe and eight published unidentified (presumably species-level) lineages of Posthodiplostomum from Canada confirmed the distinct status of the three European species (contrary to the generally accepted opinion that only P. brevicaudatum and P. cuticola occur in the Palaearctic). The subspecies Posthodiplostomum minimum centrarchi Hoffmann, 1958, originally described from North America, is elevated to the species level as Posthodiplostomum centrarchi Hoffman, 1958. The undescribed “Posthodiplostomum sp. 3” of Locke et al. (2010) from centrarchid fishes in Canada has identical sequences with the European isolates of P. centrarchi and is recognised as belonging to the same species. The latter parasite, occurring in the alien pumpkinseed sunfish Lepomis gibbosus in Europe, is also supposed to be alien for this continent. It is speculated that it colonised Europe long ago and is currently widespread (recorded in Bulgaria, Slovakia and Spain); based on the cox1 sequence of an adult digenean isolate from the Ebro Delta, Spain, only the grey heron (Ardea cinerea L.) (Ciconiiformes: Ardeidae) is known to be its definitive host in Europe.  相似文献   

14.
The phylogenetic relationships among the three species of Tinospora found in India are poorly understood. Morphology does not fully help to resolve the phylogeny and therefore a fast approach using molecular analysis was explored. Two molecular approaches viz Random Amplified Polymorphic DNA (RAPD) assay and restriction digestion of ITS1-5.8S-ITS2 rDNA (PCR-RFLP) were used to evaluate the genetic similarities between 40 different accessions belonging to three species. Of the 38 random primers used only six generated the polymorphism, while as three out of 11 restriction enzymes used gave polymorphic restriction patterns. The average proportion of polymorphic markers across primers was 95%, however restriction endonucleases showed 92% polymorphism. RAPD alone was found suitable for the species diversions. In contrast PCR- RFLP showed bias in detecting exact species variation. The correlation between the two markers was performed by Jaccard's coefficient of similarity. A significant (r= 0.574) but not very high correlation was obtained. Further to authenticate the results obtained by two markers, sequence analysis of ITS region of ribosomal DNA (ITS1 and ITS2, including 5.8S rDNA) was performed. Three independent clones of each species T. cordifolia, T. malabarica and T. crispa were sequenced. Phylogenetic relationship inferred from ITS sequences is in agreement with RAPD data.  相似文献   

15.
山茱萸不同栽培品种的 rDNA ITS 序列分析   总被引:1,自引:0,他引:1  
为测定山茱萸(Cornus officinalis Sieb.et.Zucc.)核糖体DNA的ITS序列,对山茱萸不同栽培品种进行了ITS序列分析。通过实验筛选出一对引物,进行PCR扩增,对扩增产物提取纯化,双脱氧链终止法DNA测序。然后,利用DNAssist Version 2.0软件加手工校正确定ITS1-5.8S-ITS2序列,并进行ITS序列分析。获得了山茱萸的ITS1-5.8S-ITS2完全序列,ITS1为253bp,5.8S为156bp,ITS2为273bp,总共682bp。7种果型的山茱萸其5.8S基因序列显示高度的一致性,圆柱形果型、长梨形果型、椭圆形果型和纺锤形果型的ITS区序列完全一致,短圆柱形果型在ITS1区3′端及ITS2区5′端各有1个变异位点;短梨形果型在ITS1区5′端有3个变异位点;长圆柱形果型在ITS1区有5个变异位点。结果表明,ITS序列在山茱萸种内比较保守,有的栽培品种之间有较小的差异,此研究为中药山茱萸分子鉴定提供了科学依据。  相似文献   

16.
Taxonomists find some plant genera challenging because of the few morphological differences or unclear characters among closely related species, which leads to the misidentification of taxa. DNA barcoding is an approach to identify species by using short orthologous DNA sequences, known as ‘DNA barcodes’. Concatenated rbcL and matK sequences are considered DNA barcodes for seagrasses. However, these markers are not applicable to all members of seagrasses at the species level, especially within the genus Halophila. Our previous studies indicated that the internal transcribed spacer (ITS) showed higher species resolution than the concatenated rbcL and matK sequences in the case of Halophila ovalis and closely related species. In this study, 26 ITS, two rbcL and two matK consensus sequences from 18 seagrass taxa belonging to four families collected in India, Vietnam, Germany, Croatia and Egypt were processed. Molecular ITS analysis resolved five clades. The results also indicate that the Cymodoceaceae family might be a non-monophyletic group. In conclusion, ITS could be applied as a DNA barcode for seagrasses instead of the rbcL/matK system previously proposed.  相似文献   

17.
An effective DNA marker for authenticating the genus Salvia was screened using seven DNA regions (rbcL, matK, trnL–F, and psbA–trnH from the chloroplast genome, and ITS, ITS1, and ITS2 from the nuclear genome) and three combinations (rbcL + matK, psbA–trnH + ITS1, and trnL–F + ITS1). The present study collected 232 sequences from 27 Salvia species through DNA sequencing and 77 sequences within the same taxa from the GenBank. The discriminatory capabilities of these regions were evaluated in terms of PCR amplification success, intraspecific and interspecific divergence, DNA barcoding gaps, and identification efficiency via a tree-based method. ITS1 was superior to the other marker for discriminating between species, with an accuracy of 81.48%. The three combinations did not increase species discrimination. Finally, we found that ITS1 is a powerful barcode for identifying Salvia species, especially Salvia miltiorrhiza.  相似文献   

18.
ABSTRACT

There is an increasing interest in the Eustigmatophyceae, a class of stramenopile microalgae, because they offer a variety of high-value health-beneficial compounds, e.g. polyunsaturated fatty acids (PUFAs), while concomitantly producing high biomass. Clarification of the taxonomy of these organisms at the species level is important in order to achieve reproducible results and constant yields of valuable compounds in their exploitation. Here the distinction of the, so far exclusively, morphologically defined species of the genera Eustigmatos and Vischeria was tested. Distinctions inferred from almost full 18S and ITS2 rRNA as well as plastid-encoded rbcL gene sequences were evaluated following a morphological investigation. The ITS2 secondary-structure-based phylogenies separated independent lineages (species) with long internal branches. This recommends ITS2 as a promising marker for a DNA metabarcoding approach (culture-independent biodiversity assessment). In contrast, the 18S V4 region which is commonly used in metabarcoding was almost invariant, whereas the almost full length sequences distinguished eight groups/types of strains. Monophyly of the species was supported by shared ITS2 secondary structure features, making them distinct from other eustigmatophyte lineages in concordance with phylogenetic analyses. No groups of strains were congruently supported by all three markers. Consequently, the previous distinction of two genera on the basis of morphology cannot be retained and the species should be accommodated in a single genus, Vischeria. Taxonomic changes among the species with the definition of epitypes, on the basis of cryopreserved strains, are recommended. Two findings point to a more complex evolutionary history of the species. The rbcL and nuclear markers resulted in disparate groupings of strains. In three species divergent intragenomic ITS2 paralogues were revealed. Therefore, a still broader taxon sampling, in conjunction with a deep sequencing approach, is needed for a more comprehensive understanding of the complex evolution of eustigmatophyte species.  相似文献   

19.
Niu Q  Luo J  Guan G  Liu Z  Ma M  Liu A  Gao J  Ren Q  Li Y  Qiu J  Yin H 《Experimental parasitology》2009,121(1):64-68
The first and second internal transcribed spacers (ITS1, ITS2) as well as the intervening 5.8S coding region of the rRNA gene for six Babesia spp. isolated from different geographic origins were characterized. Varying degrees of ITS1 and ITS2 intra- and inter-species sequence polymorphism were found among these isolates. Phylogenetic analysis of the ITS1-5.8S gene-ITS2 region clearly separated the isolates into two clusters. One held an unidentified Babesia sp. transmitted by Hyalomma anatolicum anatolicum. The second held five other isolates, which were considered to be Babesia motasi. Each Babesia species cluster possessed ITS1 and ITS2 of unique size(s) and species specific nucleotide sequences. The results showed that ITS1, ITS2 and the complete ITS1-5.8S-ITS2 region could be used to discriminate these ovine Babesia spp. effectively.  相似文献   

20.
There has been considerable debate regarding locus choice for DNA barcoding land plants. This is partly attributable to a shortage of comparable data from proposed candidate loci on a common set of samples. In this study, we evaluated main candidate plastid regions (rpoC1, rpoB, accD) and additional plastid markers (psbB, psbN, psbT exons and the trnS-trnG spacer) as well as the nuclear ribosomal spacer region (ITS1-5.8S-ITS2) in a group of land plants belonging to the mahogany family, Meliaceae. Across these samples, only ITS showed high levels of resolvability. Interspecific sharing of sequences from individual plastid loci was common. The combination of multiple loci did not improve performance. DNA barcoding with ITS alone revealed cryptic species and proved useful in identifying species listed in Convention on International Trade of Endangered Species appendixes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号