首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid content, fatty acid composition, and feeding activity of the dominant Antarctic copepods, Calanoides acutus, Calanus propinquus, and Metridia gerlachei, were studied at a quasi-permanent station in the eastern Weddell Sea in December 2003. During 3 weeks of the spring phytoplankton development, total lipid levels of females and copepodite stages V (CVs) of C. acutus were almost doubled. Meanwhile, only a slight increase in total lipid content occurred in M. gerlachei, and no clear trend was observed in lipids of C. propinquus females. The pronounced increase of lipids in C. acutus was due to an accumulation of wax esters. The proportion of wax esters in the lipids of M. gerlachei was clearly lower, while triacylglycerols played a more important role. In C. propinquus, triacylglycerols were the only neutral lipid class. There were no pronounced changes in the feeding activity of M. gerlachei, whereas the feeding activity of C. acutus had rapidly increased with the development of the phytoplankton bloom in December, which explains its rapid lipid accumulation. The combination of gut content and fatty acid trophic marker analyses showed that C. acutus was feeding predominantly on diatoms. The typical diatom fatty acid marker, 16:1(n-7), slightly decreased and the tracer for flagellates, 18:4(n-3), increased in females and CVs of C. acutus. This shift indicates the time, when the significance of flagellates started to increase. The three copepod species exhibited different patterns of lipid accumulation in relation to their trophic niches and different duration of their active phases. The investigations filled a crucial data gap in the seasonal lipid dynamics of dominant calanoid copepods in the Weddell Sea in December and support earlier hypotheses on their energetic adaptations and life cycle strategies.  相似文献   

2.
Gammarus wilkitzkii, Apherusa glacialis, Onismus nanseni, Onismus glacialis, Boreogadus saida, Parathemisto libellula and Calanus hyperboreus, collected in late June in the Barents Sea marginal ice zone, contained substantial levels (28–51% of the dry mass) of total lipid, the highest levels (51% and 41% respectively) being in  A. glacialis and  C. hyperboreus. Neutral lipids were present in greater amounts than polar lipids in all species. Triacylglycerols were major neutral lipids in A. glacialis, G. wilkitzkii and O. nanseni; triacylglycerols and wax esters were present in similar amounts in O. glacialis; higher levels of wax esters than triacylglycerols occurred in P. libellula; wax esters greatly exceeded triacylglycerols in C. hyperboreus, the opposite being true for B. saida. Diatom fatty acid markers were prominent in the triacylglycerols of G. wilkitzkii, O. nanseni, O. glacialis and, particularly, of  A. glacialis; 20:1(n-9) and 22:1(n-11) moieties were abundant in wax esters of G. wilkitzkii, O. nanseni, O. glacialis, P. libellula and  C. hyperboreus, and in triacylglycerols of B. saida. We deduce that  A. glacialis feeds mainly on ice algae and phytodetritus, G. wilkitzkii and the Onismus spp. feed on calanoid copepods as well as ice algae, whereas P. libellula and especially B. saida feed extensively on calanoid copepods. Accepted: 17 May 1998  相似文献   

3.
Summary The composition of lipid classes and their component fatty acid are described for copepodite stages III, IV, V, and adult females of Calanus glacialis sampled from Arctic waters of the Barents Sea during summer. Was esters were the principal component of the lipid in all copepodite stages examined, averaging 73% over all the stages. The proportion of triacylglycerols varied from 1.5% to 10.5% of total lipid among copepodite stages. The lipids of adult females contained lower levels of wax esters and higher levels of triacylglycerols than copepodite stages III, IV and V. Fatty alcohols of wax esters from copepods sampled in June and July were dominated by 20:1 (n-9) and 22:1 (n-11) alcohols with the proportion of 20:1 (n-9) increasing from stages III to adult female. 14:0 and 16:0 alcohols were the principal fatty alcohols of wax esters of a sample comprising mainly of copepodites stage III taken in August. 16:1 (n-7), 20:1 (n-9) and 20:5 (n-3) were the major fatty acids in the was esters of animals captured in June and July whereas 18:1 (n-9) predominated in the August sample. The polar lipids of the copepodite stage III from August also contained lower levels of polyunsaturated fatty acids than from all stages of copepods from June and July. The data are discussed in relation to life cycle strategies and trophic aspects of Calanus glacialis in the Arctic pelagic community of the Barents Sea.  相似文献   

4.
Open-water, marginal-ice and in-ice zones were sampled in the Weddell Sea during November and December, 1993 in an effort to examine the influence of the early spring bloom on the diet and population structure of the three biomass dominant copepods: Metridia gerlachei, Calanus propinquus, and Calanoides acutus. The abundance of all three species in the upper 200 m was highest at stations in the open water, but individually, each species displayed a unique trend. M. gerlachei, which showed the least variability, was significantly more abundant in open water than in the marginal-ice zone. The abundance of Calanus propinquus was higher in open water than in the marginal-ice zone or in the ice. Calanoides acutus displayed the highest variability, with significant differences between all three ice-cover zones. Diet analysis revealed no significant differences in the number of food items within each ice-cover zone and diatoms were the most numerous item identified in the guts of all three species. However, M. gerlachei and Calanus propinquus also contained metazoan material, while Calanoides acutus did not. There were dramatic differences in the age composition of the species between the zones. Early copepodite stages of all three species predominated at the ice edge and in open water. Numbers of M. gerlachei adult females were roughly equivalent in all three zones while Calanoides acutus and Calanus propinquus adult females composed a higher fraction of the total population within the ice. These results compare well with life-history data compiled by other authors and reinforce the importance of the ice edge to bloom-dependent Antarctic zooplankton. Accepted: 5 April 1999  相似文献   

5.
Summary The lipid-rich pelagic teleost Maurolicus muelleri has large lipid depots located subcutaneously, intramuscularly and around the digestive tract. The lipid is contained within conventional adipocytes and is composed largely of triacylglycerols rich in 20:1 (n-9) and lipid-rich mesopelagic teleost Benthosema glaciale, except that the lipid is predominantly wax esters whose fatty alcohols and fatty acids are both rich in 20:1 (n-9) and 22:1 (n-11) moieties. An origin for the lipids of both species in the wax esters of calanoid copepods is indicated. The anatomical distribution of the lipids in these teleosts and their intracellular location point to their being fundamentally an energy store. The twin roles of neutral lipids in providing metabolic energy and buoyancy are discussed.  相似文献   

6.
Lipid and fatty acid compositions of five notothenioid fishes from the Antarctic Weddell and Lazarev Seas were investigated in detail with regard to their different modes of life. The pelagic Aethotaxis mitopteryx was the lipid-richest species (mean of 61.4% of dry mass, DM) followed by Pleuragramma antarcticum (37.7%DM). The benthopelagic Trematomus lepidorhinus had an intermediate lipid content of 23.2%DM. The benthic Bathydraco marri (20.8%DM) and Dolloidraco longedorsalis (14.5%DM) belonged to the lipid-poorer species. Triacylglycerols were the major lipid class in all species. Important fatty acids were 16:0, 16:1(n-7), 18:1(n-9), 18:1(n-7), 20:5(n-3) and 22:6(n-3). The enhanced proportions of the long-chain monounsaturated fatty acids, 20:1 and 22:1, in the lipid-rich pelagic fishes clearly reflected the ingestion of the two copepod species, Calanoides acutus and Calanus propinquus, which are the only known Antarctic zooplankters rich in these fatty acids. Although wax esters are the major storage lipid in many prey species, they were absent in all notothenioid fishes studied. Thus, wax esters ingested with prey are probably converted to triacylglycerols via fatty acids or metabolised by the fishes. The enhanced lipid accumulation with increasingly pelagic lifestyle has energetic advantages, especially with regard to improved buoyancy. It is still unknown to what extent these lipids are utilised as energy reserves, since it has been suggested that not only the benthic but also the pelagic Antarctic fishes are rather sluggish, with a low scope for activity and hence low metabolic requirements. Accepted: 14 May 2000  相似文献   

7.
Calanus glacialis is a key herbivore in Arctic shelf seas. It feeds on primary producers and accumulates large energy reserves, primarily as wax esters. Lipid classes, fatty acids (FAs) and fatty alcohols (FAlcs) from copepodite stage II (CII) to adult females (AF) from Kongsfjorden, Svalbard, were studied in May 2004. Wax esters were the dominating lipid class in all stages, ranging from 34% of total lipids in CII to 60% in CIII–CV. Triacylglycerols increased from 8% of total lipids in CII to 23% in AF. In the earlier stages, 16:1n7 and 16:0 FAs and FAlcs were the major components of the neutral lipids, whereas the later stages were mainly characterized by the long-chained FAs and FAlcs 20:1n9 and 22:1n11. C. glacialis utilizes the short spring bloom to build up lipid reserves, mainly as wax esters, and it also incorporates effectively essential polyunsaturated FAs such as 20:5n3 and 22:6n3 in its polar lipids.  相似文献   

8.
Lipid composition of zooplankton in relation to the sub-arctic food web   总被引:2,自引:0,他引:2  
Summary Seasonal changes in the lipid class composition and fatty acid and fatty alcohol composition of neutral lipids were determined for Calanus finmarchicus, Metridia longa and Sagitta sp. in Balsfjord, northern Norway. Similar analyses were obtained for C. hyperboreus and Parathemisto abyssorum in an adjacent fjord, Ullsfjord, in spring. C. finmarchicus, C. hyperboreus, M. longa, and Parathemisto abyssorum all contained large amounts of wax esters whereas Sagitta sp. contained small amounts of triacylglycerols and traces of wax esters. the levels of wax ester in C. finmarchicus and M. longa were highest in late autumn (respectively 88% and 84% of total lipid) and lowest in early spring (respectively 85% and 27% of total lipid). The accumulation of these neutral lipids in spring and summer is related to the feeding activity during the primary production period, while their decline in late winter is associated with the mobilisation of metabolic energy for production of gonads. The major fatty alcohols in the wax esters of C. finmarchicus and C. hyperboreus and Parathemisto abyssorum were 20:1 and 22:1 while those in the wax esters of M. longa were 14:0 and 16:0. The traces of wax esters in Saqitta were rich in 20:1 and 22:1 fatty alcohols. These analyses are consistent with C. finmarchicus and C. hyperboreus being strictly herbivorous, M. longa being more carnivorous and both Sagitta sp. and Parathemisto being highly carnivorous, probably ingesting substantial amounts of calanoid copepods.  相似文献   

9.
The metabolic responses of several species of Antarctic copepods to primary productivity and changes between seasons were investigated. To examine the influence of the spring ice-edge bloom on the metabolism of copepods, oxygen consumption rates were determined on specimens from three zones of widely different ice coverage and chlorophyll biomass: pack ice (pre-bloom), ice edge (bloom) and open water (post-bloom). Summer metabolic rates were compared with published winter rates. Field work was done in the Weddell Sea in the region of 60 °S, 36°W in late November and December 1993. Oxygen consumption rates were determined by placing individuals in syringe respirometers and monitoring the oxygen partial pressure for 10–20 hours. Higher metabolic rates were observed in the primarily herbivorous copepods, Calanoides acutus, Rhincalanus gigas and Calanus propinquus in regions of higher primary production: ice edge and open water. The carnivorous Paraeuchaeta antarctica showed a similar pattern. The omnivorous copepods Metridia gerlachei and Gaetanus tenuispinus showed no changes in metabolism between zones. Data on routine rates of copepods from the winter were available for C. propinquus and P. antarctica. In P. antarctica, rates were higher in the summer. Calanus propinquus showed a higher metabolic rate in the summer than in the winter, but the difference was not significant at the 0.05 level. It was concluded that copepods near the ice zone in the ice zone in the Antarctic rely on the spring ice-edge bloom for growth and completion of their life cycle.  相似文献   

10.
Four Paraeuchaeta species and three aetideids were frequently encountered along 51°30′S in the Atlantic sector of the Southern Ocean. Paraeuchaeta antarctica was most abundant close to the Antarctic Polar Front. Within the genera Paraeuchaeta and Gaetanus, congeners usually partitioned the water column. Euchaetidae had high lipid (≤37% dry mass, DM in adult females) and wax ester contents (≤22% DM). Fatty acid composition of Paraeuchaeta spp. was dominated by monounsaturated moieties, especially 16:1(n-7) and 18:1(n-9), while fatty alcohols were mainly saturated. Surprisingly, only the bathypelagic P. barbata contained moderate amounts of 20:1(n-9) and 22:1(n-11) fatty acids (≤14%) and high levels of the respective fatty alcohols (≤50%), generally considered trophic biomarkers for calanid copepods as prey. Thus, herbivorous calanid copepods seem to be a readily available prey source at bathypelagic depths, indicating that their seasonal vertical migration provides a “trophic shortcut” from primary production at the surface to the interior of the ocean. Aetideidae also contained substantial levels of total lipid (14–36% DM), but wax esters contributed only up to 12% DM in copepodite stages C5 of Gaetanus spp., whereas other stages of Gaetanus and Aetideopsis minor only contained ≤6% DM of wax esters. The fatty acid compositions of Aetideidae were more balanced with 16:0, 18:1(n-9), 20:5(n-3), and 22:6(n-3) as important components, indicating a generally omnivorous feeding behaviour.  相似文献   

11.
Lipid composition of the eggs of three reef building corals, Acropora millepora, A. tenuis and Montipora digitata, were determined. Sixty to 70% of the egg dry weight was lipid, which consisted of wax esters (69.5–81.8%), triacylglycerols (1.1–8.4%) and polar lipids c/mainly phospholipids (11.9–13.2%). Montipora digitata also contained some polar lipids typical of the thylakoid membrane in chloroplasts, probably due to the presence of symbiotic zooxanthellae in the eggs. The wax esters appeared to be the major contributor to positive buoyancy of the eggs, and specific gravity of wax esters in A. millepora was estimated to be 0.92. Among the fatty acids of the wax esters, 34.9–51.3% was hexadecanoic acid (16:0) while the major fatty acids in polar lipids were octadecenoic acid (18:1), hexadecanoic acid (16:0), eicosapentaenoic acid (20:5) and eicosatetraenoic acid (20:4). The wax ester appears to be the main component of the 4.5 6.0 m diameter lipid droplets which fill most of the central mass of the coral eggs.  相似文献   

12.
Biochemical analyses such as lipid class and elemental composition can inform us about a species’ role in community energetics and nutrient cycling. The accumulation of lipid-rich energy stores affects the elemental composition and stoichiometry of animal tissues, and this relationship is especially relevant to zooplankton at higher latitudes due to increased seasonal lipid storage. However, due to sampling difficulties, the elemental composition and energy storage capabilities of polar, benthic boundary layer zooplankton are poorly known. We determined elemental and lipid class compositions for 26 taxa of benthic boundary layer zooplankton from the Beaufort Sea shelf. Elemental composition as a percentage of dry weight ranged 21–56% for carbon (C), 4–11% for nitrogen (N), and 0.1–1.1% for phosphorus (P) across all taxa. C concentration and C:N were positively correlated with the storage lipids triacylglycerols (TG) and wax esters/steryl esters (WE/SE) and negatively correlated with membrane lipids (phospholipids and sterols). Most taxa had high levels of storage lipids, generally TG. High levels of WE/SE were found in the copepod Calanus hyperboreus (>90% of total lipid) and the chaetognath Eukrohnia hamata (72%). In contrast, the chaetognath Parasagitta elegans had only minor proportions of both TG and WE/SE. The high levels of storage lipids in most taxa indicate that feeding behavior of benthic boundary layer zooplankton on the Beaufort Sea shelf is tightly linked with seasonal pulses of epipelagic production. This is the first report on the biochemical composition of most of the amphipod and mysid taxa presented here.  相似文献   

13.
The main emphasis of this study was to analyse the short-term development of abundance, population structure and vertical distribution of the dominant calanoid copepods during a phytoplankton bloom in the coastal area of the eastern Weddell Sea in December 2003. Microcalanus pygmaeus was by far the most abundant calanoid species. Metridia gerlachei, Ctenocalanus citer, Calanoides acutus, Calanus propinquus and the ice-associated Stephos longipes were also present in considerable proportions. The observed changes in the population characteristics and parameters of these species are described in detail and discussed in the context of the spring phytoplankton bloom. A conspicuous event occurring during the final stage of the study was the development of a strong storm. While the results suggest that this storm did not have any considerable influence on the populations of all other investigated copepod species, it very likely caused pronounced changes in the S. longipes population present in the water column. Before the storm, S. longipes was found primarily in the upper 100 m of the water column, and its population was dominated by adults (mean proportion = 41%) and the copepodite stage I (mean proportion = 30%). After the storm, the abundance increased considerably, and the copepodite stage I contributed by far the largest proportion (53%) of the total population indicating that the early copepodite stages probably had been released from the sea ice into the under ice water layer due to ice break-up and ice melt processes caused by the storm.  相似文献   

14.
A survey of lipid composition was made for 15 cnidarians from Okinawa, Japan. Eleven zooxanthellate scleractinian corals, an azooxanthellate scleractinian coral Tubastrea sp., a soft coral Lobophytum crassum, a hydroid coral Millepora murrayi and a sea anemone Boloceroides sp. were examined to elucidate the total lipid content, fatty acid composition for each lipid class and sterol composition. All specimens contained monoalkyldiacylglycerol which migrated between the triacylglycerols and esters on thin layer chromatography (TLC). Analysis by high performance thin layer chromatography (HPTLC) and Gas chromatography-mass spectrometry (GC-MS) revealed that these cnidarians were rich in wax ester and triacylglycerol, and that palmitic acid (16:0) was the most abundant fatty acid component of these lipid classes, followed by stearic (18:0) and oleic (18:1, n-9) acid in order of concentration. Of 11 sterols separated, four sterols were identified. It is suggested that sterol composition may be more useful for the biochemical classification of these cnidarians than fatty acid composition.  相似文献   

15.
Samples of ice algae from the Marginal Ice Zone in the Barents Sea could be divided into two categories: one dominated by assemblages of Melosira arctica, and the other dominated by Nitzschia frigida and associated diatoms. Total lipid from the Melosira assemblages consisted of approximately equal amounts of polar lipids and triacylglycerols. Total lipid from the Nitzschia assemblages contained more triacylglycerols than polar lipids. Total lipid from the Melosira assemblages had higher percentages of C16 PUFA, especially 16:4(n-1) and 20:5(n-3), than that from the Nitzschia assemblages, this reflecting the higher percentages of both C16 PUFA and 20:5(n-3) in polar lipids than in triacylglycerols. Phytoplankton from the pelagic zone were␣richer in flagellates and contained less C16 PUFA and 20:5(n-3) but more C18 PUFA and 22:6(n-3). The dominance of diatoms in the ice-algae assemblages in the Marginal Ice Zone and their high nutritional value as a source of 20:5(n-3) for higher trophic levels are emphasised. Received: 24 November 1997 / Accepted: 8 February 1998  相似文献   

16.
The Arctic bloom consists of two distinct categories of primary producers, ice algae growing within and on the underside of the sea ice, and phytoplankton growing in open waters. Long chain omega‐3 fatty acids, a subgroup of polyunsaturated fatty acids (PUFAs) produced exclusively by these algae, are essential to all marine organisms for successful reproduction, growth, and development. During an extensive field study in the Arctic shelf seas, we followed the seasonal biomass development of ice algae and phytoplankton and their food quality in terms of their relative PUFA content. The first PUFA‐peak occurred in late April during solid ice cover at the onset of the ice algal bloom, and the second PUFA‐peak occurred in early July just after the ice break‐up at the onset of the phytoplankton bloom. The reproduction and growth of the key Arctic grazer Calanus glacialis perfectly coincided with these two bloom events. Females of C. glacialis utilized the high‐quality ice algal bloom to fuel early maturation and reproduction, whereas the resulting offspring had access to ample high‐quality food during the phytoplankton bloom 2 months later. Reduction in sea ice thickness and coverage area will alter the current primary production regime due to earlier ice break‐up and onset of the phytoplankton bloom. A potential mismatch between the two primary production peaks of high‐quality food and the reproductive cycle of key Arctic grazers may have negative consequences for the entire lipid‐driven Arctic marine ecosystem.  相似文献   

17.
We compared six biochemical measures of nutritional condition: citrate synthase activity (CS), malate and lactate dehydrogenase activity (MDH and LDH), RNA:DNA ratio, and percent body protein and lipid. Adult females of five species of calanoid copepod (Calanoides acutus, Calanus propinquus, Metridia gerlachei, Rhincalanus gigas and Paraeuchaeta antarctica) were collected in the marginal ice zone of the northwestern Weddell Sea at the time of the annual phytoplankton bloom that occurs in association with the receding ice edge during austral spring. Three zones within the marginal ice zone were sampled: heavy-ice-cover pre-bloom, ice-edge bloom and low-ice-cover post-bloom. Lipid generally increased greatly from ice-covered to open water zones, and its importance in the life of polar copepods cannot be overstated. Increases in protein from ice-covered to open water were also observed, but were of less significance. Each species exhibited significant changes in at least one enzyme activity level. Citrate synthase activity in C. acutus, C. propinquus and R. gigas, all herbivores, increased between pre- and post-bloom stations. C. propinquus and M. gerlachei, which feed during winter, had large increases in LDH activity between pre- and post-bloom stations. Rhincalanus gigas and P. antarctica, the two largest species studied, showed variations in MDH activity, with peak enzyme activity occurring in post-bloom stations. RNA:DNA ratio did not change in any species. The effects of size, shipboard handling and freezer storage were easily corrected statistically, and did not alter any conclusions. The patterns observed in copepod nutrition at the Antarctic ice edge were consistent with existing models of life history for each species. The observations reported here, in conjunction with previously reported data, suggested that measurement of metabolic enzyme activity, especially in concert with lipid, enables estimation of nutritional condition in adult copepods. Additional studies comparing metabolic activity and ecology of common species should yield more information on the ecology of rarer species.  相似文献   

18.
Triacylglycerols were the major lipid and wax esters a minor lipid in the Arctic autochthonous, sympagic amphipod, Gammarus wilkitzkii, from less than 1 year old to 3 years old in the Marginal Ice Zone around Svalbard. The fatty acids of the triacylglycerols, especially in young G. wilkitzkii, were mainly characteristic of diatoms and, to a lesser extent, flagellates. Small amounts of 20:1n-9 and 22:1n-11 fatty acids characteristic of calanoid copepods were also present in the triacylglycerols in young G. wilkitzkii from the Marginal Ice Zone and the amounts of both of these fatty acids increased in the triacylglycerols as the animals matured. G. wilkitzkii in open waters in Kongsfjord had minor amounts of triacylglycerols rich in 20:1n-9 and 22:1n-11 and major amounts of wax esters characteristic of calanoid copepods. We conclude that young G. wilkitzkii in the Marginal Ice Zone feed predominantly on ice algae and that they consume increasing amounts of calanoid copepods as they mature, albeit with ice algae remaining a prominent component of their diet. In open waters, young G. wilkitzkii consume mainly calanoid copepods.  相似文献   

19.
Ju  Se-Jong  Scolardi  K.  Daly  K. L.  Harvey  H. Rodger 《Polar Biology》2004,27(12):782-792
To better understand the trophic role of ctenophores in Antarctica during austral fall and winter, a major species of cydippid ctenophore, Callianira antarctica, was collected during April/May (fall) and August/September (winter) 2002 in the vicinity of Marguerite Bay. Lipid content, lipid classes, fatty acids, fatty alcohols and sterols were analyzed in animals, together with lipid biomarkers in krill and copepod species representing potential ctenophore prey. Lipid content in ctenophores collected in winter was slightly higher than from animals in fall (4.8 and 3.5% of dry weight, respectively). Polar lipids were the dominant lipid class in ctenophores, accounting for over half of the lipid content, with significant amounts of free fatty alcohols (more than 10% of total lipid content) detected. Lipid-class composition, however, differed significantly between seasons, with significant amounts of neutral lipid (wax esters and triacylglycerols) only detected in animals from fall. Although the dominant lipid classes in ctenophores varied between fall and winter, individual lipids (i.e., fatty acids, alcohols and sterols) showed only minor changes between seasons. Specifically, long-chain polyunsaturated fatty acids [20:5(n-3) and 22:6(n-3)] found in high abundance in larval krill were also elevated in ctenophores collected in winter. Very high amounts of monounsaturated fatty alcohols, particularly 20:1(n-9) and 22:1(n-11), known to be important components of wax esters in calanoid copepods, were also observed. Multivariate analysis using the suite of lipids found indicated that copepods are an important diet item for ctenophores in the study area. Results further suggest that C. antarctica feed actively year-round, with larval krill providing a food resource during austral winter.  相似文献   

20.
The dominant Arctic Ocean and North Atlantic copepods Calanus hyperboreus, Calanus glacialis, and Calanus finmarchicus were collected in the Greenland Sea and fed 13C labelled diatom Thalassiosira weissflogii to follow the transfer and assimilation of carbon, lipid, and individual fatty acids and alcohols. The diatom was grown with 13C for 3 to 5 days and fed then to the copepods. During the feeding period of 14 days, total carbon increased in the copepodite stages V of C. hyperboreus and C. finmarchicus, whereas carbon remained almost constant in C. glacialis females. However, total lipid increased in all species and stages. Highest lipid accumulation occurred in C. hyperboreus in which nearly all lipids were exchanged already after 11 days of feeding. In the other species lipid accumulation made up between 22% (C. finmarchicus) and 45% of total lipid (C. glacialis). The proportion of wax esters was high ranging from 76% of total lipid in C. glacialis to 92% in C. finmarchicus. The fatty acid composition of the alga was dominated by 16:1(n-7), 16:0, 20:5(n-3), and 22:6(n-3). The composition of the copepods was similar because of feeding already on diatoms in the field. In addition, the monounsaturated fatty acids and alcohols, 20:1(n-9) and 22:1(n-11), were major components of the copepod lipids. During the feeding period the highest 13C labelling was always found in the C16 polyunsaturated fatty acids and in the 16:1(n-7) alcohol. Because these components occurred only in trace amounts in the copepods they totally originated from the diet explaining the high labelling. It is noteworthy that the 16:1(n-7) alcohol originated only from the corresponding dietary and not from the abundant internal fatty acid. The long-chain monounsaturated fatty acids and alcohols, 20:1(n-9) and 22:1(n-11), are not existent in phytoplankton and have to be produced de novo. They were less labelled in the smaller species but highly 13C enriched in C. hyperboreus. Although dietary fatty acids were generally retained by the copepods it seems that fatty acids or even lipids were selectively accumulated and turned over due to bodily requirements, and thus, essential polyunsaturated fatty acids were preferentially retained. During feeding mixing, accumulation, and exchange of internal and dietary fatty acids and alcohols occurred as well as utilisation of lipids from both sources for metabolic requirements. The differences in lipid assimilation fit to the different life strategies of the copepods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号