首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel human cytochrome P450 cDNA designated CYP2U1 was identified using homology searches, and the corresponding gene is located on chromosome 4. The deduced 544 amino acid sequence displays up to 39% identity to other CYP2 family members, with closest resemblance to CYP2R1 and is highly conserved between species. CYP2U1 shows some structural differences compared to other CYP2 family members. The gene has only five exons and the enzyme harbors two insertions in the N-terminal region. Northern blot analysis revealed high mRNA expression in human thymus, with weaker expression in heart and brain, whereas in the rat similar mRNA levels were detected in thymus and brain. Western blot analysis revealed much higher CYP2U1 protein expression in rat brain than in thymus, particularly in limbic structures and in cortex. The physiological and toxicological role of this novel P450 is still unknown, but the selective tissue distribution suggests an important endogenous function.  相似文献   

2.
3.
Four-month-old female Wistar rats were exposed for 20 days to tobacco smoke obtained from non-filter cigarettes. During the exposure, concentration of tobacco smoke was monitored indirectly by measuring the CO level (1500 mg/m3 air). The efficacy of exposure was assessed by measuring urine nicotine and cotinine levels. Cigarette smoke did not change total cytochrome P450 and b5 protein levels in any of the organs studied, and most of these organs did not show any changes in the activity of reductases associated with these cytochromes. Following exposure to tobacco smoke, fetal rat liver expressed CYP2B1/2 protein; in newborns (day 1) both liver and lung showed CYP2B1/2 protein expression and very low pentoxyresorufin O-dealkylase activity. Western blot analysis of adult liver, lung, heart, but not of brain microsomes, showed that tobacco smoke induced CYP2B1/2 in both nonpregnant and pregnant rats, though its expression was lower in the livers and hearts of pregnant females. In the rat and human placenta, neither rat CYP2B1/2 nor human CYP2B6 showed basal or tobacco smoke-induced expression at the protein level. This study shows clearly that the expression of CYP2B1/2, which metabolizes nicotine and some drugs and activates carcinogens, is controlled in rats by age-, pregnancy-, and tissue-specific regulatory mechanisms.  相似文献   

4.
细胞色素P450 (cytochrome P450, CYP450)是一类血红素氧化酶。细胞色素P450家族2亚家族R成员1(cytochrome P450 family 2 subfamily R member 1, CYP2R1)是一种主要在肝组织中表达的维生素D羟化酶。目前,对于小鼠CYP2R1蛋白质的结构、物化特性和病理机制的理了解仍十分有限。本研究结合基因克隆和生物信息学分析,获得小鼠CYP2R1基因CDS序列及其生物学特征。随后,利用pcDNA3.1-CYP2R1真核表达载体,通过细胞划痕、MTT分析、real-time qPCR方法检测异源表达CYP2R1对肺癌细胞A549、胃癌细胞7901、肝癌细胞HepG2以及正常细胞HEK293T细胞的迁移、增殖和细胞周期基因表达的影响,探明其对癌细胞增殖的作用。结果显示,由C57BL/6小鼠肝组织的CYP2R1基因,序列长度1 506 bp,其中,CDS 468 bp。其编码的155个氨基酸,与其他11个物种间的同源性均较高,其三级结构与人CYP2R1略有不同。构建的pcDNA3.1-CYP2R1真核表达载体,可在体外培养细胞中提高CYP2R1基因mRNA表达105倍以上,蛋白质水平提高约30倍。值得注意的是,异源表达CYP2R1在癌细胞增殖中的作用具有差异性,其中,CYP2R1通过显著降低细胞周期蛋白基因CyclinD1(P<0.05)和Caspase3(P<0.01),而抑制7901细胞的增殖。该研究结果为进一步探索CYP2R1的生物学作用,特别是在分析其对癌细胞增殖方面提供了基础研究数据,并为进一步明确CYP2R1在癌症相关治疗中的重要意义奠定了理论基础。  相似文献   

5.
A novel human cytochrome P450, CYP2W1, was cloned and expressed heterologously. No or very low CYP2W1 mRNA levels were detected in fetal and adult human tissues, expression was however seen in 54% of human tumor samples investigated (n=37), in particular colon and adrenal tumors. Western blotting also revealed high expression of CYP2W1 in some human colon tumors. In rat tissues, CYP2W1 mRNA was expressed preferentially in fetal but also in adult colon. The CYP2W1 gene was shown to encompass one functional CpG island in the exon 1-intron 1 region which was methylated in cell lines lacking CYP2W1 expression, but unmethylated in cells expressing CYP2W1. Re-expression of CYP2W1 was seen following demethylation by 5-Aza-2'-deoxycytidine. Transfection of HEK293 cells with CYP2W1 caused the formation of a properly folded enzyme, which was catalytically active with arachidonic acid as a substrate. It is concluded that CYP2W1 represents a tumor-specific P450 isoform with potential importance as a drug target in cancer therapy.  相似文献   

6.
7.
Here we report identification of a 2269‐base pair full‐length cDNA, CYP97E1, encoding a novel cytochrome P450 protein from the marine diatom Skeletonema costatum. The CYP97E1 protein contains 659 amino acids (Mr 74,200) and is the largest P450 isoform described to date. Our BLAST homology search and parsimony analysis showed that CYP97E1 shared high sequence identity (>40%) and genetic relatedness, respectively, with the CYP97B isoforms from different plant species. CYP97E1 was predicted by PSORT (a protein localization site prediction program) to be a cytosolic protein. Northern hybridization analysis indicated that CYP97E1 expression in S. costatum was not significantly affected by 2,4‐dichlorophenol, suggesting that CYP97E1 may not be involved in 2,4‐dichlorophenol detoxification in this diatom.  相似文献   

8.
9.
On the basis of the detection of an expressed sequence tag ('EST') similar to the human cytochrome P450 3A4 cDNA, we have identified a novel member of the human cytochrome P450 3A subfamily. The coding region is 1512-bp long and shares 84, 83, and 82% sequence identity on the cDNA level with CYP3A4, 3A5, and 3A7, respectively, with a corresponding amino acid identity of 76, 76, and 71%. Quantitative real time based mRNA analysis revealed CYP3A43 expression levels at about 0.1% of CYP3A4 and 2% of CYP3A5 in the liver, with significant expression in 70% of the livers examined. Gene specific PCR of cDNA from extrahepatic tissues showed, with the exception of the testis, only low levels of CYP3A43 expression. The CYP3A43 cDNA was heterologously expressed in yeast, COS-1 cells, mouse hepatic H2.35 cells and in human embryonic kidney (HEK) 293 cells, but in contrast to CYP3A4 which was formed in all cell types, no detectable CYP3A43 protein was produced. This indicates a nonfunctional protein or specific conditions required for proper folding. It is concluded that CYP3A43 mRNA is expressed mainly in liver and testis and that the protein would not contribute significantly to human drug metabolism.  相似文献   

10.
Cytochrome P450s (P450) play a key role in oxidative reactions in plant secondary metabolism. Some of them, which catalyze unique reactions other than the standard hydroxylation, increase the structural diversity of plant secondary metabolites. In isoquinoline alkaloid biosyntheses, several unique P450 reactions have been reported, such as methylenedioxy bridge formation, intramolecular C-C phenol-coupling and intermolecular C-O phenol-coupling reactions. We report here the isolation and characterization of a C-C phenol-coupling P450 cDNA (CYP80G2) from an expressed sequence tag library of cultured Coptis japonica cells. Structural analysis showed that CYP80G2 had high amino acid sequence similarity to Berberis stolonifera CYP80A1, an intermolecular C-O phenol-coupling P450 involved in berbamunine biosynthesis. Heterologous expression in yeast indicated that CYP80G2 had intramolecular C-C phenol-coupling activity to produce (S)-corytuberine (aporphine-type) from (S)-reticuline (benzylisoquinoline type). Despite this intriguing reaction, recombinant CYP80G2 showed typical P450 properties: its C-C phenol-coupling reaction required NADPH and oxygen and was inhibited by a typical P450 inhibitor. Based on a detailed substrate-specificity analysis, this unique reaction mechanism and substrate recognition were discussed. CYP80G2 may be involved in magnoflorine biosynthesis in C. japonica, based on the fact that recombinant C. japonica S-adenosyl-L-methionine:coclaurine N-methyltransferase could convert (S)-corytuberine to magnoflorine.  相似文献   

11.
Cytochrome P450s constitute a superfamily of hemoproteins, important in the metabolism of endogenous and xenobiotic compounds. The full-length cDNA of a novel cytochrome P450, CYP9G2, was isolated from a cDNA library. The cDNA is 2143 bp in length and contains an open reading frame from 50 to 1615 bp, encoding a protein of 521 amino acid residues. The putative P450 protein contains a highly hydrophobic N terminus and a P450 protein signature motif, FG/S*G*R*C*G***A/G, known as the important ligand for heme binding, analysis of the NH2-terminal sequence indicated that CYP9G2 is a microsomal P450. Using polymerase chain reaction with primers specific to CYP9G2, the genomic structure of CYP9G2 was analyzed, and it was found that the gene contains seven introns and eight exons within the coding region, all the sequences of the exon-intron junctions are consistent with the AG-GT rule. Multiple alignment indicated that CYP9G2 is most similar to CYP9E2 from the Blattella germanica (42.7% identity), it is also similar to the insect P450s in family 9, including CYP9L1 from Anopheles gambiae (38.7%) and CYP9A1 from Heliothis virescens (39.5%).  相似文献   

12.
13.
Northern blot analysis of mRNA prepared from the lung of Suncus murinus (suncus), which was classified as an ancestor of primates, revealed that the expression level of cytochrome P450 2A (CYP2A) mRNA was about 100-fold higher than in the lung from rats and mice. To confirm that the pulmonary CYP2A of the suncus had a catalytic activity, the metabolism of a specific substrate for CYP2A6, (+)-cis-3,5-dimethyl-2-(3-pyridyl) thiazolidin-4-one hydrochloride (SM-12502), was determined. The intrinsic clearance for SM-12502 S-oxidation by the suncus lung microsomes was calculated to be 99-fold higher than that by rat liver microsomes. The mutagen-producing activity of a 9,000 g supernatant fraction prepared from suncus lung was examined using 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as a promutagen. The results showed that the suncus lung possessed 82-fold higher mutagen-producing activity than the rat lung, indicating that NNK was efficiently activated by the CYP2A isoform expressed in the suncus lung and that the suncus was a sensitive animal species to the genotoxicity of NNK contained in tobacco smoke.  相似文献   

14.
Four beta-glycosides of flavonoligan silybin, i.e. silybin beta-galactoside, silybin beta-glucoside, silybin beta-maltoside, silybin beta-lactoside were synthesized in order to improve silybin water solubility and bioavailability (Kren et al., J Chem Soc, Perkin Trans 1, 2467-2474, 1997). The presented paper deals with the effect of silybin and its synthetic beta-glycosides on the expression of two major cytochrome P450 isoforms, CYP1A2 and CYP3A4. Primary cultures of human hepatocytes were the model of choice. mRNAs were analyzed using Northern blot and P-radiolabelled probes. CYP protein content was determined by immunoblotting using specific antibodies. Silybin and its beta-glycosides do not induce expression of CYP1A2 and CYP3A4. Tested compounds did not affect inducible expression of CYP1A2 and CYP3A4 by dioxin and rifampicin, respectively, as evaluated at the level of mRNAs and proteins. Silybin and its beta-glycosides do not interfere with the expression of CYP1A2 and CYP3A4, are not likely to produce drug-drug interactions in terms of the inducibility of two important cytochromes P450.  相似文献   

15.
Genetic polymorphism of CYP2A6 in relation to cancer.   总被引:7,自引:0,他引:7  
To clarify the roles of human cytochrome P450 (P450 or CYP) 2A6 and 2E1 on the metabolic activation of N-nitrosamines, we established genetically engineered Salmonella typhimurium strains harboring human CYP2A6 or CYP2E1 together with NADPH-P450 reductase (OR). The 5'-terminus of CYP cDNA was modified to achieve a high-level expression in S. typhimurium. Modified CYP2A6 or CYP2E1 cDNA and native OR cDNA were introduced into a pCW vector. S. typhimurium YG7108 cells were transformed with this vector. The mutagen producing ability of these enzymes for some N-nitrosamines were evaluated using the established S. typhimurium cells. We found that the substrate specificity of CYP2A6 and CYP2E1 was different among mutagens. CYP2A6 was responsible for the metabolic activation of N-nitrosamines possessing relatively long alkyl chains, whereas CYP2E1 was responsible for the metabolic activation of N-nitrosamines with relatively short alkyl chains. It is likely that CYP2A6 gene polymorphism is responsible for the interindividual variability on the cancer susceptibility. We found the whole deletion of CYP2A6 gene as a type of genetic polymorphism in Japanese. Thus, we developed a gene diagnosis method to detect the variant. We evaluated the relationship between the CYP2A6 gene whole deletion and the susceptibility to the lung cancer. The frequency of CYP2A6 gene whole deletion was significantly lower in the lung cancer patients than that of healthy volunteers.  相似文献   

16.
P450 oxidoreductase (POR) has a pivotal role in facilitating electron transfer from nicotinamide adenine dinucleotide phosphate to microsomal cytochrome P450 (CYP) enzymes, including the steroidogenic enzymes CYP17A1 and CYP21A2. Mutations in POR have been shown recently to cause congenital adrenal hyperplasia with apparent combined CYP17A1 and CYP21A2 deficiency that comprises a variable clinical phenotype, including glucocorticoid deficiency, ambiguous genitalia, and craniofacial malformations. To dissect structure-function relationships potentially explaining this phenotypic diversity, we investigated whether specific POR mutations have differential effects on CYP17A1 and CYP21A2. We compared the impact of missense mutations encoding for single amino acid changes in three distinct regions of the POR molecule: 1), Y181D and H628P close to the central electron transfer area, 2) S244C located within the hinge close to the flavin adenine dinucleotide and flavin mononucleotide domains of POR, and 3) A287P that is clearly distant from the two other regions. Functional analysis using a yeast microsomal assay with coexpression of human CYP17A1 or CYP21A2 with wild-type or mutant human POR revealed equivalent decreases in CYP17A1 and CYP21A2 activities by Y181D, H628P, and S244C. In contrast, A287P had a differential inhibitory effect, with decreased catalytic efficiency (Vmax/Km) for CYP17A1, whereas CYP21A2 retained near normal activity. In vivo analysis of urinary steroid excretion by gas chromatography/mass spectrometry in 11 patients with POR mutations showed that A287P homozygous patients had the highest corticosterone/cortisol metabolite ratios, further indicative of preferential inhibition of CYP17A1. These findings provide novel mechanistic insights into the redox regulation of human steroidogenesis. Differential interaction of POR with electron-accepting CYP enzymes may explain the phenotypic variability in POR deficiency, with additional implications for hepatic drug metabolism by POR-dependant CYP enzymes.  相似文献   

17.
Injection of 1 mg kg−1 of 2-methylisoborneol (MIB) caused an increase in a CYP1A-like protein of approximately 56 kDa from the kidneys of juvenile channel catfish as determined by western blot analysis using antibodies raised against trout CYP1A1. Ethoxyresorufin O-deethylase activity from kidneys of MIB-injected fish was significantly elevated as compared to ethanol-injected controls. Static exposure of juvenile channel catfish to 10 ppm MIB caused a statistically significant induction of a CYP2K-like protein of approximately 53 kDa from the livers of treated catfish as determined by western blot analysis using antibodies raised against trout CYP2K1. Treatment of juvenile channel catfish with ethanol (1 ml kg−1) reduced the expression of one kidney and two constitutive liver P450s, while increasing another kidney form. There was no difference in carbon tetrachloride-induced lipid peroxidation in livers after ethanol treatment. Thus, MIB and ethanol affect the expression of at least three P450 isoforms in channel catfish tissues.  相似文献   

18.
The cytochrome P450 2C (CYP2C) gene locus was found to includea novel exon 1 sequence with high similarity to the canonicalexon 1 of CYP2C18. Rapid amplification of cDNA ends (RACE) andPCR amplifications of human liver cDNA revealed the presenceof several intergenic species containing the CYP2C18 exon 1–likesequence spliced to different combinations of exonic and intronicsequences from the CYP2C9 gene. One splice variant was foundto have an open reading frame starting at the canonical translationinitiation codon of the CYP2C18 exon 1–like sequence.Another variant consisted of the nine typical CYP2C9 exons splicedafter the CYP2C18 exon 1–like sequence through a segmentof CYP2C9 5' flanking sequences. Moreover, analysis of bacterialartificial chromosome (BAC) clones revealed that the CYP2C18exon 1–like sequence was located in the intergenic regionbetween the CYP2C19 and CYP2C9 genes. The finding that a solitaryexon is spliced with sequences from a neighboring gene may beinterpreted as representing a general evolutionary mechanismaimed at using the full expression potential of a cell's genomicinformational content.  相似文献   

19.
Human cytochrome P450 1B1 (CYP1B1) catalyzes the hydroxylation of 17beta-estradiol (E(2)) at C-4, with a lesser activity at C-2. The E(2) 4-hydroxylase activity of human CYP1B1 was first observed in studies of MCF-7 breast cancer cells. Sequencing of polymerase chain reaction products revealed that CYP1B1 expressed in MCF-7 cells was not the previously characterized enzyme but a polymorphic form with leucine substituted for valine at position 432 and serine substituted for asparagine at position 453. To investigate the NADPH- and organic hydroperoxide-supported E(2) hydroxylase activities of the 432L, 453S form of human CYP1B1, the MCF-7 CYP1B1 cDNA was cloned and the enzyme was expressed in Sf9 insect cells. In microsomal assays supplemented with human NADPH:cytochrome P450 oxidoreductase, the expressed 432L, 453S form catalyzed NADPH-supported E(2) hydroxylation with a similar preference for 4-hydroxylation as the 432V, 453N form, with maximal rates of 1.97 and 0.37 nmol (min)(-1)(nmol cytochrome P450)(-1) for 4- and 2-hydroxylation, respectively. Cumeme hydroperoxide efficiently supported E(2) hydroxylation by both the 432V, 453N and 432L, 453S forms at several-fold higher rates than the NADPH-supported activities and with a lesser preference for E(2) 4- versus 2-hydroxylation (2:1). The hydroperoxide-supported activities of both forms were potently inhibited by the CYP1B1 inhibitor, 3,3',4, 4',5,5'-hexachlorobiphenyl. These results indicate that the 432V, 453N and 432L, 453S forms of CYP1B1 have similar catalytic properties for E(2) hydroxylation, and that human CYP1B1 is very efficient in catalyzing the hydroperoxide-dependent formation of catecholestrogens.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号