首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Karr TL 《Heredity》2008,100(2):200-206
Proteomics is a relatively new scientific discipline that merges protein biochemistry, genome biology and bioinformatics to determine the spatial and temporal expression of proteins in cells, tissues and whole organisms. There has been very little application of proteomics to the fields of behavioral genetics, evolution, ecology and population dynamics, and has only recently been effectively applied to the closely allied fields of molecular evolution and genetics. However, there exists considerable potential for proteomics to impact in areas related to functional ecology; this review will introduce the general concepts and methodologies that define the field of proteomics and compare and contrast the advantages and disadvantages with other methods. Examples of how proteomics can aid, complement and indeed extend the study of functional ecology will be discussed including the main tool of ecological studies, population genetics with an emphasis on metapopulation structure analysis. Because proteomic analyses provide a direct measure of gene expression, it obviates some of the limitations associated with other genomic approaches, such as microarray and EST analyses. Likewise, in conjunction with associated bioinformatics and molecular evolutionary tools, proteomics can provide the foundation of a systems-level integration approach that can enhance ecological studies. It can be envisioned that proteomics will provide important new information on issues specific to metapopulation biology and adaptive processes in nature. A specific example of the application of proteomics to sperm ageing is provided to illustrate the potential utility of the approach.  相似文献   

2.
We discuss the potential and limitations of the metapopulation concept in marine ecology. The usefulness of the concept in terrestrial ecology is neither based on its simplicity or generality nor on overwhelming empirical evidence. The usefulness is in the questions which are asked when the metapopulation concept is applied. These questions address spatial phenomena and processes on different spatial scales. They help in acknowledging that every population, be it terrestrial or marine, has a spatial organization. Understanding this spatial organization is also important for tackling specific applied problems, i.e. to avoid overexploitation of living marine resources or for configuring marine reserves. The 'openness' of coastal populations, whose larvae enter larval pools or which are holoplanktonic, is no reason for not asking the questions implied by the metapopulation concept. For marine ecology, the real problem is to delineate populations, which then may possibly correspond to the 'local populations' of metapopulations. Thus, the answer to the question in the title of this paper, whether 'marine metapopulation' is a useful concept, is 'yes', if the concept is considered a working hypotheses, if the concept is explicitly defined, and if the questions linked to the concept are clearly stated. Even if it eventually transpires that only very few marine metapopulations actually exist, marine ecology would still have gained some important new insights. Electronic Publication  相似文献   

3.
Eco‐evolutionary dynamics are now recognized to be highly relevant for population and community dynamics. However, the impact of evolutionary dynamics on spatial patterns, such as the occurrence of classical metapopulation dynamics, is less well appreciated. Here, we analyse the evolutionary consequences of spatial network connectivity and topology for dispersal strategies and quantify the eco‐evolutionary feedback in terms of altered classical metapopulation dynamics. We find that network properties, such as topology and connectivity, lead to predictable spatio‐temporal correlations in fitness expectations. These spatio‐temporally stable fitness patterns heavily impact evolutionarily stable dispersal strategies and lead to eco‐evolutionary feedbacks on landscape level metrics, such as the number of occupied patches, the number of extinctions and recolonizations as well as metapopulation extinction risk and genetic structure. Our model predicts that classical metapopulation dynamics are more likely to occur in dendritic networks, and especially in riverine systems, compared to other types of landscape configurations. As it remains debated whether classical metapopulation dynamics are likely to occur in nature at all, our work provides an important conceptual advance for understanding the occurrence of classical metapopulation dynamics which has implications for conservation and management of spatially structured populations.  相似文献   

4.
局域种群的Allee效应和集合种群的同步性   总被引:3,自引:0,他引:3  
从包含Allee效应的局域种群出发,建立了耦合映像格子模型,即集合种群模型.通过分析和计算机模拟表明:(1)当局域种群受到Allee效应强度较大时,集合种群同步灭绝;(2)而当Allee效应强度相对较弱时,通过稳定局域种群动态(减少混沌)使得集合种群发生同步波动,而这种同步波动能够增加集合种群的灭绝风险;(3)斑块间的连接程度对集合种群同步波动的发生有很大的影响,适当的破碎化有利于集合种群的续存.全局迁移和Allee效应结合起来增加了集合种群同步波动的可能,从而增加集合种群的灭绝风险.这些结果对理解同步性的机理、利用同步机理来制定物种保护策略和害虫防治都有重要的意义.  相似文献   

5.
Fragmentation of a large habitat makes local populations less linked to others, and a whole population structure changes to a metapopulation. The smaller a local population is, the more strengthened extinction factors become. Then, frequent extinctions of local populations threaten persistence of the metapopulation unless recolonizations occur rapidly enough after local extinctions. Spatially structured models have been more widely used for predicting future population dynamics and for assessing the extinction risk of a metapopulation. In this article, we first review such spatially structured models that have been applied to conservation biology, focusing on effects of asynchronization among local population dynamics on persistence of the whole metapopulation. Second, we introduce our ongoing project on extinction risk assessment of an endangered composite biennial plant, Aster kantoensis, in the riverside habitat, based on a lattice model for describing its spatiotemporal population dynamics. The model predicted that the extinction risk of A. kantoensis depends on both the frequency of flood occurrence and the time to coverage of a local habitat by other competitively stronger perennials. Finally, we present a measure (Hassell and Pacala's CV 2) for quantifying the effect of asynchronization among local population dynamics on the persistence of a whole metapopulation in conservation ecology. Received: January 12, 2000 / Accepted: February 8, 2000  相似文献   

6.
To conserve endangered species, information is needed on (meta)population responses to habitat quality and management. As possibilities for long-term studies are generally limited, it is important to obtain as much information as possible in a single field season.We obtained such single-census data for the orchid Liparis loeselii, a European Habitat Directive species. Stage structures of 15 Dutch dune and fen populations were related to vegetation structure, environmental indicators, and management. Botanical inventory records from 1930 to 2003 were used to infer population life spans.Cluster analysis did not reveal successional stage structure types. Dense populations with high recruitment mainly occurred in open, young-successional vegetation with high soil pH. High soil humidity and acidification negatively affected orchid densities. Early mowing was preferable over late mowing in dune slacks, because the latter reduced juvenile densities. The predominant population life span was three to eight years, and similar for dune slacks and fens. Longer life spans were occasionally observed at mown sites with influx of base-rich water.Our results suggest high metapopulation dynamics. Long-term metapopulation viability requires the formation of new habitat by dune slack formation in dunes and peat removal in fens. Population persistence can be prolonged to some extent by mowing, extensive grazing, or sod removal if natural habitat formation is impossible. Our study demonstrates that useful information on (meta)population ecology and viability can be obtained in a single field season.  相似文献   

7.
Transient time in population dynamics refers to the time it takes for a population to return to population-dynamic equilibrium (or close to it) following a perturbation in the environment or in population size. Depending on the direction of the perturbation, transient time may either denote the time until extinction (or until the population has decreased to a lower equilibrium level), or the recovery time needed to reach a higher equilibrium level. In the metapopulation context, the length of the transient time is set by the interplay between population dynamics and landscape structure. Assuming a spatially realistic metapopulation model, we show that transient time is a product of four factors: the strength of the perturbation, the ratio between the metapopulation capacity of the landscape and a threshold value determined by the properties of the species, and the characteristic turnover rate of the species, adjusted by a factor depending on the structure of the habitat patch network. Transient time is longest following a large perturbation, for a species which is close to the threshold for persistence, for a species with slow turnover, and in a habitat patch network consisting of only a few dynamically important patches. We demonstrate that the essential behaviour of the n-dimensional spatially realistic Levins model is captured by the one-dimensional Levins model with appropriate parameter transformations.  相似文献   

8.
Quantitation is an inherent requirement in comparative proteomics and there is no exception to this for plant proteomics. Quantitative proteomics has high demands on the experimental workflow, requiring a thorough design and often a complex multi-step structure. It has to include sufficient numbers of biological and technical replicates and methods that are able to facilitate a quantitative signal read-out. Quantitative plant proteomics in particular poses many additional challenges but because of the nature of plants it also offers some potential advantages. In general, analysis of plants has been less prominent in proteomics. Low protein concentration, difficulties in protein extraction, genome multiploidy, high Rubisco abundance in green tissue, and an absence of well-annotated and completed genome sequences are some of the main challenges in plant proteomics. However, the latter is now changing with several genomes emerging for model plants and crops such as potato, tomato, soybean, rice, maize and barley. This review discusses the current status in quantitative plant proteomics (MS-based and non-MS-based) and its challenges and potentials. Both relative and absolute quantitation methods in plant proteomics from DIGE to MS-based analysis after isotope labeling and label-free quantitation are described and illustrated by published studies. In particular, we describe plant-specific quantitative methods such as metabolic labeling methods that can take full advantage of plant metabolism and culture practices, and discuss other potential advantages and challenges that may arise from the unique properties of plants.  相似文献   

9.
Stepping-stone models for the ecological dynamics of metapopulations are often used to address general questions about the effects of spatial structure on the nature and complexity of population fluctuations. Such models describe an ensemble of local and spatially isolated habitat patches that are connected through dispersal. Reproduction and hence the dynamics in a given local population depend on the density of that local population, and a fraction of every local population disperses to neighboring patches. In such models, interesting dynamic phenomena, e.g. the persistence of locally unstable predator-prey interactions, are only observed if the local dynamics in an isolated patch exhibit non-equilibrium behavior. Therefore, the scope of these models is limited. Here we extend these models by making the biologically plausible assumption that reproductive success in a given local habitat not only depends on the density of the local population living in that habitat, but also on the densities of neighboring local populations. This would occur if competition for resources occurs between neighboring populations, e.g. due to foraging in neighboring habitats. With this assumption of quasi-local competition the dynamics of the model change completely. The main difference is that even if the dynamics of the local populations have a stable equilibrium in isolation, the spatially uniform equilibrium in which all local populations are at their carrying capacity becomes unstable if the strength of quasi-local competition reaches a critical level, which can be calculated analytically. In this case the metapopulation reaches a new stable state, which is, however, not spatially uniform anymore and instead results in an irregular spatial pattern of local population abundance. For large metapopulations, a huge number of different, spatially non-uniform equilibrium states coexist as attractors of the metapopulation dynamics, so that the final state of the system depends critically on the initial conditions. The existence of a large number of attractors has important consequences when environmental noise is introduced into the model. Then the metapopulation performs a random walk in the space of all attractors. This leads to large and complicated population fluctuations whose power spectrum obeys a red-shifted power law. Our theory reiterates the potential importance of spatial structure for ecological processes and proposes new mechanisms for the emergence of non-uniform spatial patterns of abundance and for the persistence of complicated temporal population fluctuations.  相似文献   

10.
Host–parasitoid metapopulation models have typically been deterministic models formulated with population numbers as a continuous variable. Spatial heterogeneity in local population abundance is a typical (and often essential) feature of these models and means that, even when average population density is high, some patches have small population sizes. In addition, large temporal population fluctuations are characteristic of many of these models, and this also results in periodically small local population sizes. Whenever population abundances are small, demographic stochasticity can become important in several ways. To investigate this problem, we have reformulated a deterministic, host–parasitoid metapopulation as an integer-based model in which encounters between hosts and parasitoids, and the fecundity of individuals are modelled as stochastic processes. This has a number of important consequences: (1) stochastic fluctuations at small population sizes tend to be amplified by the dynamics to cause massive population variability, i.e. the demographic stochasticity has a destabilizing effect; (2) the spatial patterns of local abundance observed in the deterministic counterpart are largely maintained (although the area of ''spatial chaos'' is extended); (3) at small population sizes, dispersal by discrete individuals leads to a smaller fraction of new patches being colonized, so that parasitoids with small dispersal rates have a greater tendency for extinction and higher dispersal rates have a larger competitive advantage; and (4) competing parasitoids that could coexist in the deterministic model due to spatial segregation cannot now coexist for any combination of parameters.  相似文献   

11.
Currently, relatively few proteomics studies of chloroplast have been published, but the field has just started emerging and is likely to develop more rapidly in the future. While the complex membrane structure of the chloroplast makes it difficult to study its entire proteome by global approaches, proteomics has considerably increased our knowledge of the proteins of single compartments such as, for instance, the envelope and the thylakoid lumen. Proteomics has also succeeded in the subunit characterisation of select protein complexes such as the ribosomes and the cytochrome b (6)f complex. In addition, proteomics was successfully applied to find new potential target pathways for thioredoxin-mediated signal transduction. In this review, we present an overview of the latest developments in the field of chloroplast proteomics and discuss their impact on photosynthesis research. In addition, we summarise the current state of research in proteomics of the photosynthetic cyanobactrium Synechocystis sp. PCC 6803.  相似文献   

12.
13.
In this paper, we investigate a spatially explicit metapopulation model with Allee effects. We refer to the patch occupancy model introduced by Levins (Bull Entomol Soc Am 15:237–240, 1969) as a spatially implicit metapopulation model, i.e., each local patch is either occupied or vacant and a vacant patch can be recolonized by a randomly chosen occupied patch from anywhere in the metapopulation. When we transform the model into a spatially explicit one by using a lattice model, the obtained model becomes theoretically equivalent to a “lattice logistic model” or a “basic contact process”. One of the most popular or standard metapopulation models with Allee effects, developed by Amarasekare (Am Nat 152:298–302, 1998), supposes that those effects are introduced formally by means of a logistic equation. However, it is easier to understand the ecological meaning of associating Allee effects with this model if we suppose that only the logistic colonization term directly suffers from Allee effects. The resulting model is also well defined, and therefore we can naturally examine it by Monte Carlo simulation and by doublet and triplet decoupling approximation. We then obtain the following specific features of one-dimensional lattice space: (1) the metapopulation as a whole does not have an Allee threshold for initial population size even when each local population follows the Allee effects; and (2) a metapopulation goes extinct when the extinction rate of a local population is lower than that in the spatially implicit model. The real ecological metapopulation lies between two extremes: completely mixing interactions between patches on the one hand and, on the other, nearest neighboring interactions with only two nearest neighbors. Thus, it is important to identify the metapopulation structure when we consider the problems of invasion species such as establishment or the speed of expansion.  相似文献   

14.
Since we still know very little about stem cells in their natural environment, it is useful to explore their dynamics through modelling and simulation, as well as experimentally. Most models of stem cell systems are based on deterministic differential equations that ignore the natural heterogeneity of stem cell populations. This is not appropriate at the level of individual cells and niches, when randomness is more likely to affect dynamics. In this paper, we introduce a fast stochastic method for simulating a metapopulation of stem cell niche lineages, that is, many sub-populations that together form a heterogeneous metapopulation, over time. By selecting the common limiting timestep, our method ensures that the entire metapopulation is simulated synchronously. This is important, as it allows us to introduce interactions between separate niche lineages, which would otherwise be impossible. We expand our method to enable the coupling of many lineages into niche groups, where differentiated cells are pooled within each niche group. Using this method, we explore the dynamics of the haematopoietic system from a demand control system perspective. We find that coupling together niche lineages allows the organism to regulate blood cell numbers as closely as possible to the homeostatic optimum. Furthermore, coupled lineages respond better than uncoupled ones to random perturbations, here the loss of some myeloid cells. This could imply that it is advantageous for an organism to connect together its niche lineages into groups. Our results suggest that a potential fruitful empirical direction will be to understand how stem cell descendants communicate with the niche and how cancer may arise as a result of a failure of such communication.  相似文献   

15.
Spatial variation in habitat quality and anthropogenic factors, as well as social structure, can lead to spatially structured populations of animals. Demographic approaches can be used to improve our understanding of the dynamics of spatially structured populations and help identify subpopulations critical for the long-term persistence of regional metapopulations. We provide a regional metapopulation analysis to inform conservation management for Masai giraffes (Giraffa camelopardalis tippelskirchi) in five subpopulations defined by land management designations. We used data from an individual-based mark–recapture study to estimate subpopulation sizes, subpopulation growth rates, and movement probabilities among subpopulations. We assessed the source–sink structure of the study population by calculating source–sink statistics, and we created a female-based matrix metapopulation model composed of all subpopulations to examine how variation in demographic components of survival, reproduction, and movement affected metapopulation growth rate. Movement data indicated no subpopulation was completely isolated, but movement probabilities varied among subpopulations. Source–sink statistics and net flow of individuals indicated three subpopulations were sources, while two subpopulations were sinks. We found areas with higher wildlife protection efforts and fewer anthropogenic impacts were sources, and less-protected areas were identified as sinks. Our results highlight the importance of identifying source–sink dynamics among subpopulations for effective conservation planning and emphasize how protected areas can play an important role in sustaining metapopulations.  相似文献   

16.
Here, we study how scaling up to the metapopulation level affects predictions of a population dynamics model motivated by an aphidophagous predator–aphid system. The model incorporates optimization of egg distribution in predatory females, cannibalism among their offspring, and self-regulation of the prey population. These factors determine the within-year dynamics of the system and translate the numbers of prey and predator individuals at the beginning of the season into their numbers at the end of the season at the level of one patch—one suitable host plant or a group of these. At the end of each season, all populations of prey and all populations of predators are mixed (this simulates aphid host-alternation and ladybird migration to hibernation sites), and then redistributed at the beginning of the next season. Prey individuals are distributed at random among the patches as a “prey rain”, while adult predators that survived from the previous season optimize the distribution of their offspring, in that they prefer patches with sufficient amount of prey and absence of other predators. This redistribution followed by within-season dynamics is then iterated over many seasons. We look at whether small-scale trends in population dynamics predicted by this model are consistent with large-scale outcomes. Specifically, we show that even on the metapopulation scale, the impact of predators on prey metapopulation is relatively low. We further show how the dates of predator arrival to and departure from the system affect the qualitative behaviour of the model predictions.  相似文献   

17.
Because to defect is the evolutionary stable strategy in the prisoner’s dilemma game (PDG), understanding the mechanism generating and maintaining cooperation in PDG, i.e. the paradox of cooperation, has intrinsic significance for understanding social altruism behaviors. Spatial structure serves as the key to this dilemma. Here, we build the model of spatial PDG under a metapopulation framework: the sub-populations of cooperators and defectors obey the rules in spatial PDG as well as the colonization–extinction process of metapopulations. Using the mean-field approximation and the pair approximation, we obtain the differential equations for the dynamics of occupancy and spatial correlation. Cellular automaton is also built to simulate the spatiotemporal dynamics of the spatial PDG in metapopulations. Join-count statistics are used to measure the spatial correlation as well as the spatial association of the metapopulation. Simulation results show that the distribution is self-organized and that it converges to a static boundary due to the boycotting of cooperators to defectors. Metapopulations can survive even when the colonization rate is lower than the extinction rate due to the compensation of cooperation rewards for extinction debt. With a change of parameters in the model, a metapopulation can consist of pure cooperators, pure defectors, or cooperator–defector coexistence. The necessary condition of cooperation evolution is the local colonization of a metapopulation. The spatial correlation between the cooperators tends to be weaker with the increase in the temptation to defect and the habitat connectivity; yet the spatial correlation between defectors becomes stronger. The relationship between spatial structure and the colonization rate is complicated, especially for cooperators. The metapopulation may undergo a temporary period of prosperity just before the extinction, even while the colonization rate is declining. An erratum to this article can be found at  相似文献   

18.
Although proteomics has been exploited in a wide range of diseases for identification of biomarkers and pathophysiological mechanisms, there are still biomedical disciplines such as otology where proteomics platforms are underused due to technical challenges and/or complex features of the disease. Thus, in the past few years, healthcare and scientific agencies have advocated the development and adoption of proteomic technologies in otological research. However, few studies have been conducted and limited literature is available in this area. Here, we present the state of the art of proteomics in otology, discussing the substantial evidence from recent experimental models and clinical studies in inner-ear conditions. We also delineate a series of critical issues including minute size of the inner ear, delicacy and poor accessibility of tissue that researchers face while undertaking otology proteomics research. Furthermore, we provide perspective to enhance the impact and lead to the clinical implementation of these proteomics-based strategies.  相似文献   

19.
It has been shown theoretically that the conditions for the maintenance of polymorphism at pleiotropic loci with antagonistic effects on fitness components are rather restrictive. Here, we use a metapopulation model to investigate whether antagonistic pleiotropy could help maintain polymorphism involving common deleterious alleles in the phytopathogenic fungus Microbotryum violaceum. This fungus causes anther smut disease of the Caryophyllaceae. A previous model has shown that the sex-linked deleterious alleles can be maintained under a metapopulation structure, when intra-tetrad selfing (mating between products of the same meiosis) is high, due to founder effects and selection at the population level. Here, we add two types of pleiotropic advantages to the metapopulation model. A competitive advantage for strains carrying the sex-linked deleterious alleles did not facilitate their maintenance because competitive situations were too rare. In contrast, higher spore production did facilitate the maintenance of the deleterious alleles at low intra-tetrad mating rates and with a large advantage for spore production. These results show that antagonistic pleiotropy may promote the persistence of genetic variation, in combination with other selective forces.  相似文献   

20.
The Glanville fritillary butterfly ( Melitaea cinxia ) has been studied in the Åland Islands in Finland since 1991, where it occurs as a classic metapopulation in a large network of 4000 dry meadows. Much ecological work has been conducted on this species, but population genetic studies have been hampered by paucity of suitable genetic markers. Here, using single nucleotide polymorphisms and microsatellites developed for the Glanville fritillary, we examine the correspondence between the demographic and genetic spatial structures. Given the dynamic nature of the metapopulation, the current genetic spatial structure may bear a signal of past changes in population sizes and past patterns of gene flow rather than reflect the current demographic structure or landscape structure. We analyse this question with demographic data for 10 years, using the Rand index to assess the similarity between the genetic, demographic, and landscape spatial structures. Our results show that the current genetic spatial structure is better explained by the past rather than by the current demographic spatial structure or by the spatial configuration of the habitat in the landscape. Furthermore, current genetic diversity is significantly explained by past metapopulation sizes. The time lag between major demographic events and change in the genetic spatial structure and diversity has implications for the study of spatial dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号