首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants have been constructed by deleting regions of the gene rpsA for ribosomal protein S1, which had been cloned in plasmid pACYC184. The mutant genes were analyzed for their ability to complement an S1 amber mutant containing a temperature-sensitive suppressor. Another series of mutants was constructed using the tac promoter plasmid pKK223-3, and the effect of the mutant proteins was analyzed in a strain wild type for rpsA. The gene products of all mutants were identified by the immunoblotting technique. Plasmids with a mutant rpsA gene which do not or only poorly complement the S1 amber mutation cause drastic growth reduction, whereas the overall protein synthesis is affected to different extents depending on the site of the deletion. Mutants which express S1 fragments comprising at least the NH2-terminal 100 amino acids stimulate or inhibit the synthesis of certain cellular proteins. The amount of chromosomal coded S1 was reduced by each mutant plasmid. Our data suggest that S1 has a general regulatory role during protein biosynthesis.  相似文献   

2.
Beutler R  Kaufmann M  Ruggiero F  Erni B 《Biochemistry》2000,39(13):3745-3750
The IICB(Glc) subunit of the glucose transporter acts by a mechanism which couples vectorial translocation with phosphorylation of the substrate. It contains 8 transmembrane segments connected by 4 periplasmic, 2 short, 1 long (80 residues), cytoplasmic loops and an independently folding cytoplasmic domain at the C-terminus. Random DNase I cleavage, EcoRI linker insertion, and screening for transport-active mutants afforded 12 variants with between 46% and 116% of wild-type sugar phosphorylation activity. They carried inserts of up to 29 residues and short deletions in periplasmic loops 1, 2, and 3, in the long cytoplasmic loop 3, and in the linker region between the membrane spanning IIC(Glc) and the cytoplasmic IIB(Glc) domains. Disruption of the gene at the sites of linker insertion decreased the expression level and diminished phosphotransferase activity to between 7% and 32%. IICB(Glc) with a discontinuity in the cytoplasmic loop was purified to homogeneity as a stable complex. It was active only if encoded by a dicistronic operon but not if encoded by two genes on two different replicons, suggesting that spatial proximity of the nascent polypeptide chains is important for folding and membrane assembly.  相似文献   

3.
Ruth A  Stein WD  Rose E  Roninson IB 《Biochemistry》2001,40(14):4332-4339
The MDR1 P-glycoprotein (Pgp), responsible for a clinically important form of multidrug resistance in cancer, is an ATPase efflux pump for multiple lipophilic drugs. The G185V mutation near transmembrane domain 3 of human Pgp increases its relative ability to transport several drugs, including etoposide, but decreases the transport of other substrates. MDR1 cDNA with the G185V substitution was used in a function-based selection to identify mutations that would further increase Pgp-mediated resistance to etoposide. This selection yielded the I186N substitution, adjacent to G185V. Pgps with G185V, I186N, or both mutations were compared to the wild-type Pgp for their ability to confer resistance to different drugs in NIH 3T3 cells. In contrast to the differential effects of G185V, I186N mutation increased resistance to all the tested drugs and augmented the effect of G185V on etoposide resistance. The effects of the mutations on conformational transitions of Pgp induced by different drugs were investigated using a conformation-sensitive antibody UIC2. Ligand-binding analysis of the drug-induced increase in UIC2 reactivity was used to determine the K(m) value that reflects the apparent affinity of drugs for Pgp, and the Hill number reflecting the apparent number of drug-binding sites. Both mutations altered the magnitude of drug-induced increases in UIC2 immunoreactivity, the K(m) values, and the Hill numbers for individual drugs. Mutation-induced changes in the magnitude of UIC2 reactivity shift did not correlate with the effects of the mutations on resistance to the corresponding drugs. In contrast, an increase or a decrease in drug resistance relative to that of the wild type was accompanied by a corresponding increase or decrease in the K(m) or in both the K(m) and the Hill number. These results suggest that mutations that alter the ability of Pgp to transport individual drugs change the apparent affinity and the apparent number of drug-binding sites in Pgp.  相似文献   

4.
The multidrug resistance gene product, P-glycoprotein or the multidrug transporter, confers multidrug resistance to cancer cells by maintaining intracellular levels of cytotoxic agents below a killing threshold. P-glycoprotein is located within the plasma membrane and is thought to act as an energy-dependent drug efflux pump. The multidrug transporter represents a member of the ATP-binding cassette superfamily of transporters (or traffic ATPases) and is composed of two highly homologous halves, each of which harbors a hydrophobic transmembrane domain and a hydrophilic ATP-binding fold. This review focuses on various biochemical and molecular genetic approaches used to analyze the structure, function, and mechanism of action of the multidrug transporter, whose most intriguing feature is its ability to interact with a large number of structurally and functionally different amphiphilic compounds. These studies have underscored the complexity of this membrane protein which has recently been suggested to assume alternative topological and quaternary structures, and to serve multiple functions both as a transporter and as a channel. With respect to the multidrug transporter activity of P-glycoprotein, progress has been made towards the elucidation of essential amino acid residues and/or polypeptide regions. Furthermore, the drug-stimulatable ATPase activity of P-glycoprotein has been established. The mechanism of drug transport by P-glycoprotein, however, is still unknown and its physiological role remains a matter of speculation.  相似文献   

5.
Pgp (P-glycoprotein) (ABCB1) is an ATP-powered efflux pump which can transport hundreds of structurally unrelated hydrophobic amphipathic compounds, including therapeutic drugs, peptides and lipid-like compounds. This 170 kDa polypeptide plays a crucial physiological role in protecting tissues from toxic xenobiotics and endogenous metabolites, and also affects the uptake and distribution of many clinically important drugs. It forms a major component of the blood-brain barrier and restricts the uptake of drugs from the intestine. The protein is also expressed in many human cancers, where it probably contributes to resistance to chemotherapy treatment. Many chemical modulators have been identified that block the action of Pgp, and may have clinical applications in improving drug delivery and treating cancer. Pgp substrates are generally lipid-soluble, and partition into the membrane before the transporter expels them into the aqueous phase, much like a 'hydrophobic vacuum cleaner'. The transporter may also act as a 'flippase', moving its substrates from the inner to the outer membrane leaflet. An X-ray crystal structure shows that drugs interact with Pgp within the transmembrane regions by fitting into a large flexible binding pocket, which can accommodate several substrate molecules simultaneously. The nucleotide-binding domains of Pgp appear to hydrolyse ATP in an alternating manner; however, it is still not clear whether transport is driven by ATP hydrolysis or ATP binding. Details of the steps involved in the drug-transport process, and how it is coupled to ATP hydrolysis, remain the object of intensive study.  相似文献   

6.
Summary The high frequency of recombination which results from site-specific recombination acting on certain attachment site configurations leads to unlinkage of the genes on either side of att.  相似文献   

7.
Characterization and functional reconstitution of the multidrug transporter   总被引:2,自引:0,他引:2  
P-Glycoprotein, the multidrug transporter, is isolated from the plasma membrane of CHRC5 cells using a selective two-step detergent extraction procedure. The partially purified protein displays a high level of ATPase activity, which has a highK M for ATP, is stimulated by drugs, and can be distinguished from that of other membrane ATPases by its unique inhibition profile. Delipidation completely inactivates ATPase activity, which is restored by the addition of fluid lipid mixtures. P-Glycoprotein was reconstituted into lipid bilayers with retention of both drug transport and ATPase activity. Proteoliposomes containing P-glycoprotein display osmotically sensitive ATP-dependent accumulation of3H-colchicine in the vesicle lumen. Drug transport is active, generating a stable 5.6-fold concentration gradient, and can be blocked by compounds in the multidrug resistance spectrum. Reconstituted P-glycoprotein also exhibits a high level of ATPase activity which is further stimulated by various drugs. P-Glycoprotein therefore functions as an active drug transporter with constitutive ATPase activity.  相似文献   

8.
MepA is a multidrug transporter from Staphylococcus aureus that confers multidrug resistance through the efflux of a wide array of hydrophobic substrates. To evaluate the ability of MepA to recognize different substrates, the dissociation constants for interactions between MepA and three of its substrates (acriflavine (Acr), rhodamine 6G (R6G), and ethidium (Et)) were measured. Given that MepA is purified in the presence of detergents and that its substrates are hydrophobic, we examined the effect of the detergent concentration on the dissociation constant. We demonstrate that all three substrates interact directly with the detergent micelles. Additionally, we find the detergent effect on the KD value to be highly substrate-dependent. The KD value for R6G is greatly influenced by the detergent, whereas the KD values for Acr and Et are only modestly affected. The effect of the inactive D183A mutant on binding was also evaluated. The D183A mutant shows lower affinity toward Acr and Et.  相似文献   

9.
Pires MM  Hrycyna CA  Chmielewski J 《Biochemistry》2006,45(38):11695-11702
A small library of bivalent agents was designed to probe the substrate binding sites of the human multidrug transporter P-glycoprotein (P-gp). The bivalent agents were composed of two copies of the P-gp substrate emetine, linked by tethers of varied composition. An optimum distance between the emetine molecules of approximately 10 A was found to be necessary for blocking transport of the known fluorescent substrate rhodamine 123. Additionally, it was determined that hydrophobic tethers were optimal for bridging the bivalent compounds; hydrophilic or cationic moieties within the tether had a detrimental effect on inhibition of transport. In addition to acting as probes of P-gp's drug binding sites, these agents were also potent inhibitors of P-gp. One agent, EmeC5, had IC50 values of 2.9 microM for inhibiting transport of rhodamine 123 and approximately 5 nM for inhibiting the binding of a known P-gp substrate, [125I]iodoarylazidoprazosin. Although EmeC5 is an inhibitor of P-gp and was shown to interact directly with P-gp in one or more of the substrate binding sites, our data suggest that it is either not a P-gp transport substrate itself or a poor one. Most significantly, EmeC5 was shown to reverse the MDR phenotype of MCF-7/DX1 cells when co-administered with a cytotoxic agent, such as doxorubicin.  相似文献   

10.
Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation, suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC superfamily of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Konings WN  Poelarends GJ 《IUBMB life》2002,53(4-5):213-218
Most ATP-binding cassette (ABC) multidrug transporters known to date are of eukaryotic origin, such as the P-glycoproteins (Pgps) and multidrug resistance-associated proteins (MRPs). Only one well-characterized ABC multidrug transporter, LmrA, is of bacterial origin. On the basis of its structural and functional characteristics, this bacterial protein is classified as a member of the P-glycoprotein cluster of the ABC transporter superfamily. LmrA can even substitute for P-glycoprotein in human lung fibroblast cells, suggesting that this type of transporter is conserved from bacteria to man. The functional similarity between bacterial LmrA and human P-glycoprotein is further exemplified by their currently known spectrum of substrates, consisting mainly of hydrophobic cationic compounds. In addition, LmrA was found to confer resistance to eight classes of broad-spectrum antibiotics, and homologs of LmrA have been found in pathogenic bacteria, supporting the clinical and academic value of studying this bacterial protein. Current studies are focused on unraveling the mechanism by which ABC multidrug transporters, such as LmrA, couple the hydrolysis of ATP to the translocation of drugs across the membrane. Recent evidence indicates that LmrA mediates drug transport by an alternating two-site transport mechanism.  相似文献   

12.
13.
To study the structure-function relationship of the human granulocyte-macrophage colony-stimulating factor (GM-CSF), genes were constructed that encode its three deletion mutants: D1, a mutant with the deletion of six amino acid residues (37-42) some of which are a part of a beta-structural region; D2, a mutant with the deletion of the unstructured six-aa sequence of a loop (45-50); and D3, a mutant with the deletion of 14 aa residues (37-50) corresponding to the A-B loop and encoded by the second exon of the gmcsf gene. The expression products of these genes in E. coli were accumulated in a fraction of insoluble proteins. The secondary structures of the mutant proteins were similar to that of the full-size GM-CSF, but the biological activity of the deletion mutants was 130 times lower than that of the GM-CSF: they stimulated the proliferation of the TF-1 cell line at 3 ng/ml concentration. The resulting proteins displayed antagonistic properties toward the full-size GM-CSF, with the inhibition degree of its colony-stimulating activity being 27%. A decrease in the mutant activity in the row D2 > D1 > D3 implies the importance of the conserved hydrophobic residues involved in the formation of the beta-structure for the formation of the GM-CSF functional conformation.  相似文献   

14.
The small multidrug resistance proteins constitute a family of bacterial antiporters that confer multidrug resistance by H(+)-linked drug efflux across the bacterial cytoplasmic membrane. The structure of EmrE, the family archetype, has been determined by electron crystallography and shows that EmrE in the membrane is an asymmetric homodimer composed of a tightly packed bundle of eight alpha helices, six of which form the substrate-binding site, which has a single molecule of tetraphenylphosphonium at its centre. Two X-ray structures of EmrE have been determined; the first structure was of a non-native conformation of EmrE that formed a crystallographic tetramer, whereas EmrE in the second structure was an asymmetric dimer containing a single molecule of bound tetraphenylphosphonium. This recent EmrE structure bears a superficial resemblance to the electron crystallographic structure and the differences were ascribed to conformational changes. However, the biological relevance of these conformational differences is questionable.  相似文献   

15.
Interaction of forskolin with the P-glycoprotein multidrug transporter.   总被引:2,自引:0,他引:2  
Forskolin and 1,9-dideoxyforskolin, an analogue that does not activate adenylyl cyclase, were tested for their ability to enhance the cytotoxic effects of adriamycin in human ovarian carcinoma cells, SKOV3, which are sensitive to adriamycin and express low levels of P-glycoprotein, and a variant cell line, SKVLB, which overexpresses the P-glycoprotein and has the multidrug resistance (MDR) phenotype. Forskolin and 1,9-dideoxyforskolin both increased the cytotoxic effects of adriamycin in SKVLB cells, yet had no effect on SKOV3 cells. Two photoactive derivatives of forskolin have been synthesized, 7-O-[[2-[3-(4-azido-3- [125I]iodophenyl)propionamido]ethyl] carbamyl]-7-deacetylforskolin, 125I-7-AIPP-Fsk, and 6-O-[[2-[3-(4-azido-3- [125I]iodophenyl)propionamido]ethyl]carbamyl]forskolin, 125I-6-AIPP-Fsk, which exhibit specificity for labeling the glucose transporter and adenylyl cyclase, respectively (Morris et al., 1991). Both photolabels identified a 140-kDa protein in membranes from SKVLB cells whose labeling was inhibited by forskolin and 1,9-dideoxyforskolin. There was no specific labeling of proteins in membranes from the SKOV3 cells. The overexpressed 140-kDa protein in SKVLB membranes was identified as the P-glycoprotein by immunoblot analysis and immunoprecipitation using anti-P-glycoprotein antiserum. Total inhibition of photolabeling of the P-glycoprotein was observed with verapamil, nifedipine, diltiazem, and vinbalastine, and partial inhibition was observed with colchicine and cytochalasin B. Forskolin was less effective at inhibiting the photolabeling of the P-glycoprotein than 1,9-dideoxyforskolin or a lipophilic derivative of forskolin. The data are consistent with forskolin binding to the P-glycoprotein analogous to that of other chemosensitizing drugs that have been shown to partially reverse MDR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Romsicki Y  Sharom FJ 《Biochemistry》2001,40(23):6937-6947
The P-glycoprotein multidrug transporter acts as an ATP-powered efflux pump for a large variety of hydrophobic drugs, natural products, and peptides. The protein is proposed to interact with its substrates within the hydrophobic interior of the membrane. There is indirect evidence to suggest that P-glycoprotein can also transport, or "flip", short chain fluorescent lipids between leaflets of the membrane. In this study, we use a fluorescence quenching technique to directly show that P-glycoprotein reconstituted into proteoliposomes translocates a wide variety of NBD lipids from the outer to the inner leaflet of the bilayer. Flippase activity depended on ATP hydrolysis at the outer surface of the proteoliposome, and was inhibited by vanadate. P-Glycoprotein exhibited a broad specificity for phospholipids, and translocated phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. Lipid derivatives that were flipped included molecules with long, short, unsaturated, and saturated acyl chains and species with the NBD group covalently linked to either acyl chains or the headgroup. The extent of lipid translocation from the outer to the inner leaflet in a 20 min period at 37 degrees C was directly estimated, and fell in the range of 0.36-1.83 nmol/mg of protein. Phospholipid flipping was inhibited in a concentration-dependent, saturable fashion by various substrates and modulators, including vinblastine, verapamil, and cyclosporin A, and the efficiency of inhibition correlated well with the affinity of binding to Pgp. Taken together, these results suggest that P-glycoprotein carries out both lipid translocation and drug transport by the same path. The transporter may be a generic flippase for hydrophobic molecules with the correct steric attributes that are present within the membrane interior.  相似文献   

17.
Baker J  Wright SH  Tama F 《Proteins》2012,80(6):1620-1632
EmrD is a multidrug resistance (MDR) transporter from Escherichia coli, which is involved in the efflux of amphipathic compounds from the cytoplasm, and the first MDR member of the major facilitator superfamily to be crystallized. Molecular dynamics simulation of EmrD in a phospholipid bilayer was used to characterize the conformational dynamics of the protein. Motions that support a previously proposed lateral diffusion pathway for substrate from the cytoplasmic membrane leaflet into the EmrD central cavity were observed. In addition, the translocation pathway of meta-chloro carbonylcyanide phenylhydrazone (CCCP) was probed using both standard and steered molecular dynamics simulation. In particular, interactions of a few specific residues with CCCP have been identified. Finally, a large motion of two residues, Val 45 and Leu 233, was observed with the passage of CCCP into the periplasmic space, placing a lower bound on the extent of opening required at this end of the protein for substrate transport. Overall, our simulations probe details of the transport pathway, motions of EmrD at an atomic level of detail, and offer new insights into the functioning of MDR transporters.  相似文献   

18.
In Saccharomyces cerevisiae four transporters, Tpo1p-Tpo4p, all members of the major facilitator superfamily, have been shown to confer resistance to polyamines. It was suggested that they act by pumping their respective substrate into the lumen of the vacuole depending on the proton gradient generated by the V-ATPase. Using sucrose gradient ultracentrifugation we found that an hemagglutinin (HA)-tagged Tpo1p as well as its HA-tagged Tpo2p-4p homologues co-localize with plasma membrane markers. Because the HA-tagged Tpo1p carrier protein proved to be functional in conferring resistance to polyamines in TPO1 knockouts, a function of Tpo1p in transport of polyamines across the plasma membrane seemed to be likely. The polyamine transport activity of wild type cells was compared with the respective activity of a TPO1 knockout strain. The results obtained strongly suggest that Tpo1p is a plasma membrane-bound exporter, involved in the detoxification of excess spermidine in yeast. When studying polyamine transport of wild type cells, we furthermore found that S. cerevisiae is excreting putrescine during the fermentative growth phase.  相似文献   

19.
A multidrug efflux transporter in Listeria monocytogenes   总被引:2,自引:0,他引:2  
A chromosomal gene (mdrL) was found in Listeria monocytogenes L028, showing a high degree of similarity with multidrug efflux transporters of the major facilitator superfamily (family 2). An allele-substituted mutant of this gene failed to pump out ethidium bromide and presented lower minimal inhibitory concentrations of macrolides, cefotaxime and heavy metals. This is the first multidrug efflux pump described in Listeria.  相似文献   

20.
MAS solid-state NMR studies on the multidrug transporter EmrE   总被引:1,自引:0,他引:1  
We study the uniformly 13C,15N isotopically enriched Escherichia coli multidrug resistance transporter EmrE using MAS solid-state NMR. Solid-state NMR can provide complementary structural information as the method allows studying membrane proteins in their native environment as no detergent is required for reconstitution. We compare the spectra obtained from wildtype EmrE to those obtained from the mutant EmrE-E14C. To resolve the critical amino acid E14, glutamic/aspartic acid selective experiments are carried out. These experiments allow to assign the chemical shift of the carboxylic carbon of E14. In addition, spectra are analyzed which are obtained in the presence and absence of the ligand TPP+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号