首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gollapalli DR  Maiti P  Rando RR 《Biochemistry》2003,42(40):11824-11830
RPE65 is a major protein of unknown function found associated with the retinyl pigment epithelial (RPE) membranes [Hamel, C. P., Tsilou, E., Pfeffer, B. A., Hooks, J. J., Detrick, B., and Redmond, T. M. (1993) J. Biol. Chem. 268, 15751-15757; Bavik, C. O., Levy, F., Hellman, U., Wernstedt, C., and Eriksson, U. (1993) J. Biol. Chem. 268, 20540-20546]. RPE65 knockouts fail to synthesize 11-cis-retinal, the chromophore of rhodopsin, and accumulate all-trans-retinyl esters in the RPE. Previous studies have also shown that RPE65 is specifically labeled with all-trans-retinyl ester based affinity labeling agents, suggesting a retinyl ester binding role for the protein. In the present work, we show that purified RPE65 binds all-trans-retinyl palmitate (tRP) with a K(D) = 20 pM. These quantitative experiments are performed by measuring the quenching of RPE65 fluorescence by added tRP. The binding for tRP is highly specific because 11-cis-retinyl palmitate binds with a K(D) = 14 nM, 11-cis-retinol binds with a K(D) = 3.8 nM, and all-trans-retinol (vitamin A) binds with a K(D) = 10.8 nM. This stereospecificity for tRP is to be compared to the binding of retinoids to BSA, where virtually no discrimination is found in the binding of the same retinoids. This work provides further evidence that RPE65 functions by binding to and mobilizing the highly hydrophobic all-trans-retinyl esters, allowing them to enter the visual cycle.  相似文献   

2.
A major goal in vision research over the past few decades has been to understand the molecular details of retinoid processing within the retinoid (visual) cycle. This includes the consequences of side reactions that result from delayed all-trans-retinal clearance and condensation with phospholipids that characterize a variety of serious retinal diseases. Knowledge of the basic retinoid biochemistry involved in these diseases is essential for development of effective therapeutics. Photoisomerization of the 11-cis-retinal chromophore of rhodopsin triggers a complex set of metabolic transformations collectively termed phototransduction that ultimately lead to light perception. Continuity of vision depends on continuous conversion of all-trans-retinal back to the 11-cis-retinal isomer. This process takes place in a series of reactions known as the retinoid cycle, which occur in photoreceptor and RPE cells. All-trans-retinal, the initial substrate of this cycle, is a chemically reactive aldehyde that can form toxic conjugates with proteins and lipids. Therefore, much experimental effort has been devoted to elucidate molecular mechanisms of the retinoid cycle and all-trans-retinal-mediated retinal degeneration, resulting in delineation of many key steps involved in regenerating 11-cis-retinal. Three particularly important reactions are catalyzed by enzymes broadly classified as acyltransferases, short-chain dehydrogenases/reductases and carotenoid/retinoid isomerases/oxygenases. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.  相似文献   

3.
4.
The synthesis of 11-fluoro-all-trans-retinol (11-F-tROL), which is shown to be an excellent substrate for processing by visual cycle enzymes, is described. It is isomerized to its 11-cis congener subsequent to its esterification by lecithin retinol acyl transferase (LRAT) approximately as well as is vitamin A itself. The enzymatic turnover of 11-F-tROL is unaccompanied by enzyme inhibition. The previously reported lack of isomerization of this substrate had been suggested as evidence for a carbonium mechanism in the critical enzymatic isomerization pathway in vision. The mechanism of this process remains unknown.  相似文献   

5.
The glycylmethyl and glycylethyl esters of glutathione have been synthesized and carefully characterized by both 1H-NMR and tandem FAB mass spectrometry. Contrary to previously published studies, these compounds (as their methylglyoxal-thiohemiacetals) do indeed serve as moderately efficient substrates for yeast glyoxalase I, with kcat values that are approx. 3-fold smaller and Km values that are approx. 3-fold larger than those of the thiohemiacetal formed from glutathione. Product inhibition studies show that the glycylmethyl and glycylethyl esters of (S)-D-lactoylglutathione bind approx. 1.4-fold less tightly to the active site than (S)-D-lactoylglutathione. These observations exclude an essential role for the glycyl-CO2- of substrate in active site binding and catalysis.  相似文献   

6.
In vertebrate retinal photoreceptors, the absorption of light by rhodopsin leads to photoisomerization of 11-cis-retinal to its all-trans isomer. To sustain vision, a metabolic system evolved that recycles all-trans-retinal back to 11-cis-retinal. The importance of this visual (retinoid) cycle is underscored by the fact that mutations in genes encoding visual cycle components induce a wide spectrum of diseases characterized by abnormal levels of specific retinoid cycle intermediates. In addition, intense illumination can produce retinoid cycle by-products that are toxic to the retina. Thus, inhibition of the retinoid cycle has therapeutic potential in physiological and pathological states. Four classes of inhibitors that include retinoid and nonretinoid compounds have been identified. We investigated the modes of action of these inhibitors by using purified visual cycle components and in vivo systems. We report that retinylamine was the most potent and specific inhibitor of the retinoid cycle among the tested compounds and that it targets the retinoid isomerase, RPE65. Hydrophobic primary amines like farnesylamine also showed inhibitory potency but a short duration of action, probably due to rapid metabolism. These compounds also are reactive nucleophiles with potentially high cellular toxicity. We also evaluated the role of a specific protein-mediated mechanism on retinoid cycle inhibitor uptake by the eye. Our results show that retinylamine is transported to and taken up by the eye by retinol-binding protein-independent and retinoic acid-responsive gene product 6-independent mechanisms. Finally, we provide evidence for a crucial role of lecithin: retinol acyltransferase activity in mediating tissue specific absorption and long lasting therapeutic effects of retinoid-based visual cycle inhibitors.  相似文献   

7.
Mammalian paraoxonases (PONs 1, 2 and 3) are a highly conserved family of esterases, with uncertain physiological functions and natural substrates. Here we characterize the ability of purified recombinant human PONs to hydrolyze estrogen esters, a class of compounds previously not known to be PON substrates. PONs hydrolyzed estrogen mono- and diesters at position 3 of the steroid A-ring. Diesters were better substrates for the PONs and were very efficiently hydrolyzed, particularly by PON3. Esters at position 17 were not cleaved by the PONs unless an adjacent double bound was present. Purified human serum butyryl cholinesterase also hydrolyzed estrogen esters, however it preferably hydrolyzed the mono-esters. The ability of the PONs' to effectively hydrolyze a variety of estrogen esters provides further insight into the structure of their active sites and suggests that natural compounds with aromatic ester groups might be relevant substrates for the PONs.  相似文献   

8.
9.
Regeneration of 11-cis retinal from all-trans retinol in the retinal pigment epithelium (RPE) is a critical step in the visual cycle. The enzyme(s) involved in this isomerization process has not been identified and both all-trans retinol and all-trans retinyl esters have been proposed as the substrate. This study is to determine the substrate of the isomerase enzyme or enzymatic complex. Incubation of bovine RPE microsomes with all-trans [(3)H]-retinol generated both retinyl esters and 11-cis retinol. Inhibition of lecithin retinol acyltransferase (LRAT) with 10-N-acetamidodecyl chloromethyl ketone (AcDCMK) or cellular retinol-binding protein I (CRBP) diminished the generation of both retinyl esters and 11-cis retinol from all-trans retinol. The 11-cis retinol production correlated with the retinyl ester levels, but not with the all-trans retinol levels in the reaction mixture. When retinyl esters were allowed to form prior to the addition of the LRAT inhibitors, a significant amount of isomerization product was generated. Incubation of all-trans [(3)H]-retinyl palmitate with RPE microsomes generated 11-cis retinol without any detectable production of all-trans retinol. The RPE65 knockout (Rpe65(-/-)) mouse eyecup lacks the isomerase activity, but LRAT activity remains the same as that in the wild-type (WT) mice. Retinyl esters in WT mice plateau at 8 weeks-of-age, but Rpe65(-/-) mice continue to accumulate retinyl esters with age (e.g., at 36 weeks, the levels are 20x that of WT). Our data indicate that the retinyl esters are the substrate of the isomerization reaction.  相似文献   

10.
4-Methylumbelliferyl esters of amino acid derivatives have been synthesized using the carbodiimide, disulphite and carbonate methods. Of these, the first was shown capable of preparing 2-naphthyl and 4-methylumbelliferyl esters of benzoylglycine, benzyloxycarbonyl glycine and benzyloxycarbonyl-citrulline but not of benzoyl-NG-nitroarginine. 2-Naphthyl benzoyl-NG-nitroargininate was prepared successfully using di(2-naphthyl)sulphite. Bis(4-methylumbelliferyl)sulphite could not be prepared but 4-methylumbelliferyl benzoyl-NG-nitroargininate was obtained by the use of an equilibrium method using diphenyl sulphite in the presence of 4-methylumbelliferone. A new reagent, phenyl 4-methylumbelliferyl carbonate, was synthesized and used for the preparation of the 4-methylumbelliferyl esters of benzoylglycine, benzyloxycarbonylglycine and benzoyl-NG-nitroarginine. The 4-methylumbelliferyl esters of benzyloxycarbonylglycine and benzyloxycarbonylcitrulline were shown to be good substrates for the assay of proteases, including chymotrypsin (EC 3.4.21.1) and trypsin (EC 3.4.21.4). Disadvantages of 4-methylumbelliferyl esters are discussed.  相似文献   

11.
Understanding of the stereospecificity of enzymatic reactions that regenerate the universal chromophore required to sustain vision in vertebrates, 11-cis-retinal, is needed for an accurate molecular model of retinoid transformations. In rod outer segments (ROS), the redox reaction involves all-trans-retinal and pro-S-NADPH that results in the production of pro-R-all-trans-retinol. A recently identified all-trans-retinol dehydrogenase (photoreceptor retinol dehydrogenase) displays identical stereospecificity to that of the ROS enzyme(s). This result is unusual, because photoreceptor retinol dehydrogenase is a member of a short chain alcohol dehydrogenase family, which is often pro-S-specific toward their hydrophobic alcohol substrates. The second redox reaction occurring in retinal pigment epithelium, oxidation of 11-cis-retinol, which is largely catalyzed by abundantly expressed 11-cis-retinol dehydrogenase, is pro-S-specific to both 11-cis-retinol and NADH. However, there is notable presence of pro-R-specific activities. Therefore, multiple retinol dehydrogenases are involved in regeneration of 11-cis-retinal. Finally, the cellular retinaldehyde-binding protein-induced isomerization of all-trans-retinol to 11-cis-retinol proceeds with inversion of configuration at the C(15) carbon of retinol. Together, these results provide important additions to our understanding of retinoid transformations in the eye and a prelude for in vivo studies that ultimately may result in efficient pharmacological intervention to restore and prevent deterioration of vision in several inherited eye diseases.  相似文献   

12.
Recent work on the retinotectal projection clearly establishes the roles of neuronal activity and position-based cues in the patterning of nerve connections. In some species, the high degree of spatial order has been shown to emerge from a continued process of terminal growth and refinement. The future challenge is now to determine how multiple cues work together to guide the sculpting of the final pattern.  相似文献   

13.
Powell GT  Wright GJ 《PLoS biology》2011,9(12):e1001216
Cellular fusion is required in the development of several tissues, including skeletal muscle. In vertebrates, this process is poorly understood and lacks an in vivo-validated cell surface heterophilic receptor pair that is necessary for fusion. Identification of essential cell surface interactions between fusing cells is an important step in elucidating the molecular mechanism of cellular fusion. We show here that the zebrafish orthologues of JAM-B and JAM-C receptors are essential for fusion of myocyte precursors to form syncytial muscle fibres. Both jamb and jamc are dynamically co-expressed in developing muscles and encode receptors that physically interact. Heritable mutations in either gene prevent myocyte fusion in vivo, resulting in an overabundance of mononuclear, but otherwise overtly normal, functional fast-twitch muscle fibres. Transplantation experiments show that the Jamb and Jamc receptors must interact between neighbouring cells (in trans) for fusion to occur. We also show that jamc is ectopically expressed in prdm1a mutant slow muscle precursors, which inappropriately fuse with other myocytes, suggesting that control of myocyte fusion through regulation of jamc expression has important implications for the growth and patterning of muscles. Our discovery of a receptor-ligand pair critical for fusion in vivo has important implications for understanding the molecular mechanisms responsible for myocyte fusion and its regulation in vertebrate myogenesis.  相似文献   

14.

Background

Mammalian GPx7 is a monomeric glutathione peroxidase of the endoplasmic reticulum (ER), containing a Cys redox center (CysGPx). Although containing a peroxidatic Cys (CP) it lacks the resolving Cys (CR), that confers fast reactivity with thioredoxin (Trx) or related proteins to most other CysGPxs.

Methods

Reducing substrate specificity and mechanism were addressed by steady-state kinetic analysis of wild type or mutated mouse GPx7. The enzymes were heterologously expressed as a synuclein fusion to overcome limited expression. Phospholipid hydroperoxide was the oxidizing substrate. Enzyme–substrate and protein–protein interaction were analyzed by molecular docking and surface plasmon resonance analysis.

Results

Oxidation of the CP is fast (k+ 1 > 103 M− 1 s− 1), however the rate of reduction by GSH is slow (k′+ 2 = 12.6 M− 1 s− 1) even though molecular docking indicates a strong GSH–GPx7 interaction. Instead, the oxidized CP can be reduced at a fast rate by human protein disulfide isomerase (HsPDI) (k+ 1 > 103 M− 1 s− 1), but not by Trx. By surface plasmon resonance analysis, a KD = 5.2 μM was calculated for PDI–GPx7 complex. Participation of an alternative non-canonical CR in the peroxidatic reaction was ruled out. Specific activity measurements in the presence of physiological reducing substrate concentration, suggest substrate competition in vivo.

Conclusions

GPx7 is an unusual CysGPx catalyzing the peroxidatic cycle by a one Cys mechanism in which GSH and PDI are alternative substrates.

General significance

In the ER, the emerging physiological role of GPx7 is oxidation of PDI, modulated by the amount of GSH.  相似文献   

15.
Statistical models are helping palaeontologists to elucidate the history of biodiversity. Sampling standardization has been extensively applied to remedy the effects of uneven sampling in large datasets of fossil invertebrates. However, many vertebrate datasets are smaller, and the issue of uneven sampling has commonly been ignored, or approached using pairwise comparisons with a numerical proxy for sampling effort. Although most authors find a strong correlation between palaeodiversity and sampling proxies, weak correlation is recorded in some datasets. This has led several authors to conclude that uneven sampling does not influence our view of vertebrate macroevolution. We demonstrate that multi-variate regression models incorporating a model of underlying biological diversification, as well as a sampling proxy, fit observed sauropodomorph dinosaur palaeodiversity best. This bivariate model is a better fit than separate univariate models, and illustrates that observed palaeodiversity is a composite pattern, representing a biological signal overprinted by variation in sampling effort. Multi-variate models and other approaches that consider sampling as an essential component of palaeodiversity are central to gaining a more complete understanding of deep time vertebrate diversification.  相似文献   

16.
17.
Proteasomes are multi-subunit proteases involved in several mechanisms and thought to contribute to the regulation of cellular homeostasis. Here, we report for the first time biochemical evidence for the existence of a ubiquitin-proteasome proteolytic pathway in this parasite. Proteasomes from both cercariae and adult worms exhibited a high preference for hydrolysis of the substrate Suc-LLVY-AMC, although in the cercariae extract the rate of hydrolysis was 50% lower when compared to adult worms extracts. The same difference in proteasome activities was observed when endogenous proteins were broken down in the presence of ATP and ubiquitin. Additionally, accumulation of high molecular weight conjugates was observed when cercariae were pre-incubated with proteasome inhibitors. Finally, we present evidence that during experimental schistosomiasis, proteasome inhibitors were able to reduce the number of lung stage schistosomula, reduce the worm burden and consequently decrease the egg output in infected mice.  相似文献   

18.
In vivo cell cycle analysis in higher eukaryotes has been limited by the challenge of preserving the integrity of the living organism while visualizing dividing cells. Here, we propose a new model, which uses the unique combination of features of the Japanese medaka in order to visualize and manipulate the cell cycle progression in a live vertebrate. Our stable transgenic histone H2B-GFP medaka line allows fluorescence-based monitoring of the chromosomes. The system has a high specificity, with a strong GFP signal labeling the chromatin architecture. The subcellular resolution ensures detection of both normal and abnormal divisions in live recordings. This translates into the possibility to quantify temporal and spatial aspects of the cell cycle, such as length or nuclear size, as well as to expose drug toxicity at the earliest stage. We also show that acclimation to cold, a prominent feature of the eurytherm medaka, is a valuable natural way of inducing a reversible cell cycle arrest in the entire living organism. Our results suggest that this manipulation can be performed from the early stages of development, has no toxicity and does not alter the cell-cycle profile of the embryo.  相似文献   

19.
Quercetin glucuronides are the main circulating metabolites of quercetin in humans. We hypothesise that the potential availability of the aglycone within tissues depends on the substrate specificity of the deconjugating enzyme beta-glucuronidase towards circulating flavonoid glucuronides. Human tissues (small intestine, liver and neutrophils) exhibited beta-glucuronidase against quercetin glucuronides. The various quercetin glucuronides were deconjugated at similar rates, but liver cell-free extracts were the most efficient and the activity was completely inhibited by saccharo-1,4-lactone (a beta-glucuronidase inhibitor). Furthermore, pure recombinant human beta-glucuronidase hydrolysed various flavonoid glucuronides, with a 20-fold variation in catalytic efficiency (k(cat)/K(m)=1.3x10(3) M(-1) s(-1) for equol-7-O-glucuronide and 26x10(3) M(-1) s(-1) for kaempferol-3-O-glucuronide). Similar catalytic efficiencies were obtained for quercetin O-glucuronides substituted at different positions. These results show that flavonoid glucuronides can be deconjugated by microsomal beta-glucuronidase from various human cells.  相似文献   

20.
The article considers mechanisms of diencephalic-telencephalic interactions in regulation of the wakefulness-sleep cycle in various classes of vertebrates. In such interactions a special role is played by the dopaminergic systems that perform neurosecretory function at the level of diencephalon and neurotransmitter function at the level of telencephalon. Concepts of A.I. Karamyan and A.L. Polenov about the stage pattern of development of CNS and neurosecretory systems are presented, as well as the interconnection of dopaminergic and glutamatergic neurotransmitter systems in the mammalian neostriatum in the wakefulness-sleep cycle is considered. Comparison of dynamics of expression of the dopamine metabotropic receptors and of the glutamate ionotropic receptors in neostriatum showed unidirectional changes of D1 and AMPA on the background of the 6-h sleep deprivation as well as of D2 and NMDA on the background of postdeprivative sleep. The corticofugal direction of glutamate impulsation and its relatively fast actions allow admitting its triggering action on generation of the sleep-inducing processes in the underlying brain parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号