首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A sensitive search has been made in Drosophila melanogaster DNA for short repetitive sequences interspersed with single copy sequences. Five kinds of measurements all yield the conclusion that there are few short repetitive sequences in this genome: 1) Comparison of the kinetics of reassociation of short (360 nucleotide) and long (1,830 nucleotide) fragments of DNA; 2) reassociation kinetics of long fragments (2,200 nucleotide) with an excess of short (390 short nucleotide) fragments; 3) measurement of the size of S1 nuclease resistant reassociated repeated sequences; 4) measurement of the hyperchromicity of reassociated repetitive fragments as a function of length; 5) direct assay by kinetics of reassociation of the amount of single copy sequence present on 1,200 nucleotide long fragments which also contain repetitive sequences.  相似文献   

2.
We describe the use of DNA reassociation kinetics to determine the total genome size and complexity together with the individual complexity and copy number of the single copy, middle repetitive and highly repeated DNA fractions of cell line and larval DNA from the mosquito, Aedes aegypti. The genome of Ae. aegypti is both large and complex, being one third the size of the human genome, and exhibits a short period interspersed repeat pattern. The implications of patterns of sequence arrangement and genome complexities for experiments aimed at isolating specific classes of DNA sequences, such as mobile genetic elements, are discussed.  相似文献   

3.
Structural genes adjacent to interspersed repetitive DNA sequences   总被引:2,自引:0,他引:2  
The observation that repetitive and single copy sequences are interspersed in animal DNAs has suggested that repetitive sequences are adjacent to single copy structural gene sequences. To test this concept, single copy DNA sequences contiguous to interspersed repetitive sequences were prepared from sea urchin DNA by hydroxyapatite fractionation (repeat-contiguous DNA fraction). These single copy sequences included about one third of the total nonrepetitive sequence in the genome as determined by the amounts recovered during the hydroxyapatite fractionation and by reassociation kinetics. 3H-labeled mRNA from sea urchin gastrula was prepared by puromycin release from polysomes and used in DNA-driven hybridization reactions. The kinetics of mRNA hybridization reactions with excess whole DNA were carefully measured, and the rate of hybridization was found to be 3–5 times slower than the corresponding single copy DNA driver reassociation rate. The mRNA hybridized with excess repeat-contiguous DNA with similar kinetics relative to the driver DNA. At completion 80% of that mRNA hybridizable with whole DNA (approximately 65%) had reacted with the repeat-contiguous DNA fraction (50%). This result shows that 80–100% of the mRNA molecules present in sea urchin embryos are transcribed from single copy DNA sequences adjacent to interspersed repetitive sequences in the genome.  相似文献   

4.
《Experimental mycology》1990,14(4):299-309
The size and organization of the genome of Bremia lactucae, a highly specialized fungal pathogen of lettuce, has been characterized using dot blot genomic reconstructions, reverse genomic blots, and genomic DNA reassociation kinetics. The haploid genome contains 5 × 107 bp of DNA and 65% of the nuclear DNA is repeated. Low copy sequences are interspersed with repeated sequences in a short-period interspersion pattern. This pattern of genome organization is different to that described for other fungi. Although most fungi have been shown to contain some form of repetitive DNA other than the ribosomal repeat, the high percentage of repetitive DNA and the interspersion of low copy and repeated sequences are atypical of fungi characterized previously.  相似文献   

5.
DNA sequence organization in the mollusc Aplysia californica.   总被引:7,自引:0,他引:7  
The sequence organization of the DNA of the mollusc Aplysia californica has been examined by a combination of techniques. Close-spaced interspersion of repetitive and single copy sequences occurs throughout the majority of the genome. Detailed examination of the DNA of this protostome reveals great similarities to the pattern observed in the two deuterostome organisms previously examined in detail in this laboratory, Xenopus laevis and Strongylocentrotus purpuratus. Labeled and unlabeled Aplysia DNA were prepared from developing embryos and sheared to a fragment length of 400 nucleotides. The kinetics of reassociation were studied by means of hydroxyapatite chromatography, single-strand-specific S1 nuclease, and optical methods of assay. Aplysia DNA of this fragment length contains at least five resolvable kinetic fractions. One classification of these fractions, listed with their reassociation rate constants (l M-1 sec-1) is: single copy (0.00057), slow (0.047), fast (2.58), very fast (4000), and foldback (greater than 10(5)). Sequence arrangement was deduced from: the kinetics of reassociation of DNA fragments of length 400 or 2000 nucleotides; the hyperchromicity of reassociated fragments containing duplex regions; the size of duplex regions resistant to S1 nuclease; and the reassociation of labeled fragments of various lengths with short driver fragments. More than 80% of the single copy DNA sequences are interspersed with repetitive sequences. The maximum spacing of the repeats is about 2000 nucleotides, and the average less than 1000. The very fast fraction does not show interspersion with single copy sequences or with other kinetic fractions. The foldback fraction sequences are fairly widely interspersed. The slow fraction sequences are interspersed with the fast fraction, and possibly also with the single copy DNA. The fast fraction is the dominant interspersed repetitive fraction. Its sequences are adjacent to the great majority of the single copy sequences and have an average length of about 300 nucleotides.  相似文献   

6.
The nuclear genome of pearl millet has been characterized with respect to its size, buoyant density in CsCl equilibrium density gradients, melting temperature, reassociation kinetics and sequence organization. The genome size is 0.22 pg. The mol percent G + C of the DNA is calculated from the buoyant density and the melting temperature to be 44.9 and 49.7%, respectively. The reassociation kinetics of fragments of DNA 300 nucleotides long reveals three components: a rapidly renaturing fraction composed of highly repeated and/or foldback DNA, middle repetitive DNA and single copy DNA. The single copy DNA consists of 17% of the genome. 80% of the repetitive sequences are at least 5000 nucleotide pairs in length. Thermal denaturation profiles of the repetitive DNA sequences show high Tm values implying a high degree of sequence homogeneity. About half of the single copy DNA is short (750--1400 nucleotide paris) and interspersed with long repetitive DNA sequences. The remainder of the single copy sequences vary in size from 1400 to 8600 nucleotide pairs.  相似文献   

7.
The frequency classes and organization of the main component (mc) DNA of a crustacean, the land crab, Gecarcinus lateralis, have been characterized. The reassociation kinetics of 380 nucleotide long mcDNA fragments show that approximately 50% contain sequences repeated more than 800 times. Present in few, if any, copies are sequences repeated from 2 to 800 times. The remainder of the DNA reassociates as single copy sequences with a rate constant consistent with the organism's genome size. The reassociation kinetics of highly sheared DNA fragments of every true crab studied (Vaughn, 1975; Christie et al., 1976) are similar to each other and different from those of other invertebrate DNAs (Goldberg et al., 1975). Each of these genomes has a paucity of sequences repeated from 10 to 800 times and an abundance of highly repeated sequences. To determine if sequences repeated more than 800 times are interspersed with single copy sequences, we examined the arrangement of repetitive and non-repetitive sequences in mcDNA. The reassociation and melting properties of partially duplex mcDNA fragments of increasing lengths show that at least 75% of the DNA is organized in an interspersed pattern. In this pattern, single copy sequences with an average length of 800–900 nucleotides are interspersed with repetitive sequences. S1 nuclease digestion of reassociated 3100 nucleotide fragments indicates that 44% of the mcDNA is repetitive and that one-third of the repetitive sequences (average length=285 nucleotides) are interspersed with single copy sequences. We conclude that repetitive sequencies are interspersed with most of the single copy sequences in an interspersion pattern similar to that of Xenopus rahter than to that of another arthropod, Drosophila.Operated by Union Carbide Corporation for the Energy Research and Development Administration  相似文献   

8.
The sequence organization of porcine DNA isolated from thyroid has been analyzed by hydroxylapatite (HAP) chromatography. The reassociation of 0.4 kilobase (Kb) DNA fragments shows, besides the presence of 5% inverted repeat sequences (foldback DNA), that 45% of the genome is represented by high (10%) and intermediate (35%) repetitive components, whereas the remaining 50% is unique sequences. 30% of the unique sequences consists of 1,000 nucleotide fragments interspersed with repetitive elements 400 nucleotides in length. The remaining 20% is longer unique sequences (10,000 nucleotides) apparently not linked to repetitive elements.  相似文献   

9.
Sequence organization of the soybean genome   总被引:9,自引:0,他引:9  
The total complexity of one constituent soybean (Glycine max) genome is estimated to be 1.29 . 10(9) nucleotide pairs, as determined by analysis of the reassociation kinetics of sheared (0.47 kilobase) DNA. Single copy sequences are estimated to represent from 53 to 64% of the genome by analysis of hydroxyapatite binding of repetitive DNA as a function of fragment length. From 65 to 70% of these single copy sequences have a short period interspersion with 1.11--1.36 kilobase lengths alternating with 0.3--0.4 kilobase repetitive sequence elements. The repetitive sequences of soybean DNA are interspersed both among themselves and among single copy regions of the genome.  相似文献   

10.
We have examined the organization of the repeated and single copy DNA sequences in the genomes of two insects, the honeybee (Apis mellifera) and the housefly (Musca domestica). Analysis of the reassociation kinetics of honeybee DNA fragments 330 and 2,200 nucleotides long shows that approximately 90% of both size fragments is composed entirely of non-repeated sequences. Thus honeybee DNA contains few or no repeated sequences interspersed with nonrepeated sequences at a distance of less than a few thousand nucleotides. On the other hand, the reassociation kinetics of housefly DNA fragments 250 and 2,000 nucleotides long indicates that less than 15% of the longer fragments are composed entirely of single copy sequences. A large fraction of the housefly DNA therefore contains repeated sequences spaced less than a few thousand nucleotides apart. Reassociated repetitive DNA from the housefly was treated with S1 nuclease and sized on agarose A-50. The S1 resistant sequences have a bimodal distribution of lengths. Thirty-three percent is greater than 1,500 nucleotide pairs, and 67% has an average size about 300 nucleotide pairs. The genome of the housefly appears to have at least 70% of its DNA arranged as short repeats interspersed with single copy sequences in a pattern qualitatively similar to that of most eukaryotic genomes.  相似文献   

11.
DNA sequence organization in the genomes of five marine invertebrates   总被引:10,自引:1,他引:9  
The arrangement of repetitive and non-repetitive sequence was studied in the genomic DNA of the oyster (Crassostrea virginica), the surf clam (Spisula solidissima), the horseshoe crab (Limulus polyphemus), a nemertean worm (Cerebratulus lacteus) and a jelly-fish (Aurelia aurita). Except for the jellyfish these animals belong to the protostomial branch of animal evolution, for which little information regarding DNA sequence organization has previously been available. The reassociation kinetics of short (250-300 nucleotide) and long (2,000-3,000 nucleotide) DNA fragments was studied by the hydroxyapatite method. It was shown that in each case a major fraction of the DNA consists of single copy sequences less than about 3,000 nucleotides in length, interspersed with short repetitive sequences. The lengths of the repetitive sequences were estimated by optical hyperchromicity and S1 nuclease measurements made on renaturation products. All the genomes studied include a prominent fraction of interspersed repetitive sequences about 300 nucleotides in length, as well as longer repetitive sequence regions.  相似文献   

12.
1. Highly repetitive, middle repetitive and single copy DNA were evaluated in 19 species of birds, belonging to nine orders, by means of a reassociation kinetics method. 2. A rather uniform pattern is present in all the species studied (single copy = 60-75%; middle repetitive = 13-20% and highly repetitive 10-20%). 3. Reassociation kinetics of fragments of different length confirms the presence of a long period interspersion pattern. 4. Among different orders, no significant differences are observed. 5. DNA sequence organization seems to be related to genome size, with an inverse correlation between DNA nuclear content and amount of interspersed repetitive sequences.  相似文献   

13.
The genome of parsley was studied by DNA/DNA reassociation to reveal its spectrum of DNA reiteration frequencies and sequence organization. The reassociation of 300 nucleotide DNA fragments indicates the presence of four classes of DNA differing in repetition frequency. These classes are: highly repetitive sequences, fast intermediate repetitive sequences, slow intermediate repetitive sequences, and unique sequences. The repeated classes are reiterated on average 136,000, 3000, and 42 times respectively. A minor part of the genome is made up of palindromes. — The organization of DNA sequences in the P. sativum genome was determined by the reassociation kinetics of DNA fragments of varying length. Further information was derived from S1 nuclease resistance and from hyperchromicity measurements on DNA fragments reassociated to defined C0t values. — The portion of the genome organized in a short period interspersion pattern amounts to 47%, with the unique sequences on an average 1000 nucleotides long, and most of the repetitive sequences about 300 nucleotides in length, whereas the weight average length may be up to 600 nucleotides. — About 5% unique DNA and 11% slow intermediate repetitive DNA consist of sequences from 103 up to 104 nucleotides long; these are interspersed with repetitive sequences of unknown length. Long repetitive sequences constitute 33% of the genome, 13% are satellite-like organized, and 20% in long stretches of intermediate repetitive DNA in which highly divergent sequences alternate with sequences that show only minimal divergence. — The results presented indicate remarkable similarities with the genomes of most animal species on which information is available. The most intriguing pecularity of the plant genome derives from its high content of repetitive DNA and the presumed organization of the latter.  相似文献   

14.
Repetitive sequence transcripts in the mature sea urchin oocyte   总被引:7,自引:0,他引:7  
  相似文献   

15.
This paper offers a criticism of the common approach to the reassociation kinetics of eukaryotic DNA assuming an independent reassociation of nucleotide sequences with different frequencies of reiteration. The reassociation of randomly sheared DNA containing reiterated sequences interspersed with unique ones is described in terms of the model for randomly sheared DNA proposed by Gavrilov & Mazo (1977). Computations performed for different values of the interspersion parameters demonstrate their influence on the reassociation rate of total DNA and its repeat-enriched fraction. The reassociation rate of repeated sequences increases with their length. In the case of short-period interspersion appreciable differences are observed between the reassociation kinetics computed in terms of the random shearing model and the curves obtained for an admittedly independent reassociation of repeated and single-copy sequences.  相似文献   

16.
The genome of Thiobacillus ferrooxidans ATCC 19859 is about 2.8 X 10(6) base pairs as determined by analysis of reassociation kinetics of sheared DNA. This is 70% of the size of the genome of Escherichia coli. About 6% of the genome of T. ferrooxidans consists of moderately repetitive DNA sequences that are repeated an average of 20 times per genome. Two distinct repeated sequences, designated family 1 and family 2, have been analyzed in more detail. Both families are approximately 1 kilobase in length and are repeated 20 to 30 times per genome. Preliminary evidence from restriction enzyme analysis, Southern blotting experiments, and thermal melting analysis indicates that members of both families are conserved and are interspersed with single-copy DNA. Six copies of one family are present on the 45-kilobase-pair plasmid of strain ATCC 19859.  相似文献   

17.
A specific class of DNA sequences, the inverted repetitive sequences, forms a double-stranded structure within a single linear polynucleotide chain in denatured DNA. The reassociation process is unimolecular and occurs very fast. Quantitative analyses have shown that in mouse P815 cells these sequences comprise about 4% of the nuclear DNA and are interspersed within sequences of other degrees of repetitiveness. After labeling the cells with L-[Me-3H]methionine and [14C]deoxycytidine, relative rates of enzymic DNA methylation were computed on the basis of radioactivities found in pyrimidine residues of the nuclear DNA. The results indicate that in P815 cells, DNA of inverted repetitive sequences is methylated to a level about 50% higher than the normal repetitive DNA sequences and to about 300% higher than the unique and intermediary intermediatry sequences. The biological function of the inverted repetitive sequences, as well as of the role of enzymic methylation of DNA remains unknown.  相似文献   

18.
We have identified and sequenced two members of a chicken middle repetitive DNA sequence family. By reassociation kinetics, members of this family (termed CRl) are estimated to be present in 1500-7000 copies per chicken haploid genome. The first family member sequenced (CRlUla) is located approximately 2 kb upstream from the previously cloned chicken Ul RNA gene. The second CRl sequence (CRl)Va) is located approximately 12 kb downstream from the 3' end of the chicken ovalbumin gene. The region of homology between these two sequences extends over a region of approximately 160 base pairs. In each case, the 160 base pair region is flanked by imperfect, but homologous, short direct repeats 10-15 base pairs in length. When the CRl sequences are compared with mammalian ubiquitous interspersed repetitive DNA sequences (human Alu and Mouse Bl families), several regions of extensive homology are evident. In addition, the short nucleotide sequence CAGCCTGG which is completely conserved in ubiquitous repetitive sequence families from several mammalian species is also conserved at a homologous position in the chicken sequences. These data imply that at least certain aspects of the sequence and structure of these interspersed repeats must predate the avian-mammalian divergence. It seems that the CRl family may possibly represent an avian counterpart of the mammalian ubiquitous repeats.  相似文献   

19.
The pattern of DNA sequence organization in the genome of Cycas revoluta was analyzed by DNA/DNA reassociation. Reassociation of 400 base pair (bp) fragments to various C0t values indicates the presence of at least four kinetic classes: the foldback plus very highly repetitive sequences (15%), the fast repeats (24%), the slow repeats (44%), and the single copy (17%). The latter component reassociates with a rate constant 1×10–4 M–1S–1 corresponding to a complexity of 1.6× 106 kb per haploid genome. A haploid C. revoluta nucleus contains approximately 10.3 pg DNA. The single-copy sequences account for about 28% of the DNA, but only 17% reassociate with single-copy kinetics because of interspersion with repetitive sequences. — The interspersion of repetitive and single-copy sequences was examined by reassociation of DNA fragments of varying length to C0t values of 70 and 500. A major (65%) and homogeneous class of single-copy sequences averaging 1,100 bp in length is interspersed in a short period pattern with repeated sequences. A minor (35%) heterogeneous single-copy component is interspersed in a long-period pattern. The majority of repetitive sequences have a length distribution of 100–350 bp with subclasses averaging 150 and 300 bp in length. Repeat sequences with a wide range in sizes exceeding 2 kilobase pair (kb) are also present in this genome. — The size and distribution of inverted repeat (ir) sequences in the DNA of C. revoluta were studied by electron microscopy. It is estimated that there are approximately 4 × 106 ir pairs (one per 2.33 kb) that form almost equal numbers of looped and unlooped palindromes. This high value is 2.5 times that found in wheat DNA. These palindromes are in general randomly distributed in the genome with an average interpalindrome distance of 1.6 kb. The majority (about 85%) of ir sequences of both types of palindromes belong to a main-size class, with an average length of 210 bp in the unlooped and and 163 bp in the looped type. These values are comparable to those reported for some other plant and animal genomes. Distribution of length of single stranded loops showed a main-size class (75%) with an average length of 220 bp.  相似文献   

20.
Hyperchromicity, S1 nuclease digestion, and reassociation studies of Syrian hamster repetitive DNA have led to novel conclusions about repetitive sequence organization. Re-evaluation of the hyperchromicity techniques commonly used to determine the average length of genomic repetitive DNA regions indicates that both the extent of reassociation, and the possibility of non-random elution of hyperpolymers from hydroxyapatite can radically affect the observed hyperchromicity. An alternative interpretation of hyperchromicity experiments, presented here, suggests that the average length of repetitive regions in Syrian hamster DNA must be greater than 4000 nucleotides.S1 nuclease digestion of reassociated 3200 nucleotide Syrian hamster repetitive DNA, on the other hand, yields both long (>2000 nucleotides) and short (300 nucleotides) resistant DNA duplexes. Calculations indicate that the observed mass of short nuclease-resistant duplexes (>60%) is too large to have arisen only from independent short repetitive DNA sequences alternating with non-repetitive regions. Reassociation experiments using long and short S1 nuclease-resistant duplexes as driver DNA indicate that all repetitive sequences are present in both fractions at approximately the same concentration. Isolated long S1 nuclease-resistant duplexes, after denaturation, renaturation, and a second S1 nuclease digestion, again produce both long and short DNA duplexes. Reassociation experiments indicate that all repetitive DNA sequences are still present in the “recycled” long S1 nuclease-resistant duplexes. These experiments imply that many of the short S1 nuclease-resistant repetitive DNA duplex regions present in reassociated Syrian hamster DNA were initially present in the genome as part of longer repetitive sequence blocks. This conclusion suggests that the majority of “short” repetitive regions in Syrian hamster DNA are organized into scrambled tandem clusters rather than being individually interspersed with non-repetitive regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号