首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seed dormancy in barley (Hordeum vulgare L.) is one of the most important parameters affecting malting. Seed dormancy is quantitatively inherited and variously influenced by the environment. The objectives of the present study were to determine the genome location and effects of quantitative trait loci (QTLs) involved in the expression of seed dormancy in a barley cross between two varieties derived from different germplasm pools. Using a doubled-haploid population of 107 lines of the cross between the malting types Triumph (two-row, dormant) and Morex (six-row, non-dormant), seed dormancy phenotypic data sets from five environments and a 147-marker linkage map were developed in order to perform QTL analyses with simple interval mapping and simplified composite interval mapping procedures. Two different types of variables were considered for seed dormancy characterization: (1) level of dormancy induced during seed development, which was indirectly measured as germination percentage at 3 days and 7 days, GP3 and GP7 respectively; (2) rate of dormancy release in the course of a period after seed harvest (after-ripening). Different mechanisms of genetic control were detected for these two types of dormancy-related traits. A major and consistent dormancy QTL near the centromere on chromosome 7(5H) was associated with the establishment of dormancy during seed development and accounted for 52% and 33% of the variability for GP3 and GP7, respectively. Two other QTLs located in the vicinity of the vrs1 locus on chromosome 2(2H) and near the long arm telomere on chromosome 7(5H) explained 9% and 19% of variation, respectively, for the rate of dormancy release during after-ripening. Likewise, seed dormancy was assessed in an F2 population derived from the cross between two dormant types of distinct germplasm groups, Triumph (European, two-row, malt) and Steptoe (North American, six-row, feed), which showed similar but not identical genetic control for dormancy. Interestingly, there is remarkable dormancy QTL conservation in both regions on chromosome 7(5H) identified in this study and among other barley mapping populations. These widely conserved QTLs show potential as targets for selection of a moderate level of seed dormancy in breeding programs.Communicated by P. Langridge  相似文献   

2.
BOZCUK  S. 《Annals of botany》1981,48(1):81-84
The effects of kinetin and the interaction between kinetin andsalinity on seed germination of three plant species namely Lycopersiconesculentum, Hordeum vulgare and Gossypium hirsutum were studiedKinetin was applied exogenously to the seeds in order to determinewhether this growth-promoting hormone would promote germinationand to see if osmotically-induced dormancy caused by NaCl couldbe alleviated The results indicate that kinetin is capable ofbreaking dormancy in these species and there is a significantinteraction with salinity in tomato and cotton Kinetin, germination, salinity, water stress, salt stress, Lycopersicon esculentum Mill, tomato, Hordeum vulgare L, barley, Gossypium hirsutum L, cotton  相似文献   

3.
Barley (Hordeum vulgare L.) seeds (grains) exhibit dormancyat maturity that is largely due to the presence of the glumellae(hulls) that reduce the availability of oxygen (O2) to the embryo.In addition, abscisic acid (ABA) and gibberellins (GAS) interactwith O2 to regulate barley seed dormancy. A population-basedthreshold model was applied to quantify the sensitivities ofseeds and excised embryos to O2, ABA, and GA, and to their interactiveeffects. The median O2 requirement for germination of dormantintact barley seeds was 400-fold greater than for excised embryos,indicating that the tissues enclosing the embryo markedly limitO2 penetration. However, embryo O2 thresholds decreased by anotherorder of magnitude following after-ripening. Thus, increasesin both permeability of the hull to O2 and embryo sensitivityto O2 contribute to the improvement in germination capacityduring after-ripening. Both ABA and GA had relatively smalleffects on the sensitivity of germination to O2, but ABA andGA thresholds varied over several orders of magnitude in responseto O2 availability, with sensitivity to ABA increasing and sensitivityto GA decreasing with hypoxia. Simple additive models of O2–ABAand O2–GA interactions required consideration of theseO2 effects on hormone sensitivity to account for actual germinationpatterns. These quantitative and interactive relationships amongO2, ABA, and GA sensitivities provide insight into how dormancyand germination are regulated by a combination of physical (O2diffusion through the hull) and physiological (ABA and GA sensitivities)factors. Key words: Abscisic acid, barley, germination, gibberellin, Hordeum vulgare L., model, oxygen, sensitivity Received 2 August 2007; Revised 14 November 2007 Accepted 19 November 2007  相似文献   

4.
Moderate seed dormancy is desirable in barley (Hordeum vulgare L.). It is difficult for breeders to manipulate seed dormancy in practical breeding programs because of complex inheritance and large environmental effects. Quantitative trait locus (QTL) mapping opens a way for breeders to manipulate quantitative trait genes. A seed dormancy QTL, SD2, was mapped previously in an 8-cM interval near the chromosome 7 (5H) L telomere from a cross of 'Steptoe' (dormant)/'Morex' (non-dormant) by the North American Barley Genome Project using an interval mapping method and a relatively low-resolution genetic map. SD2 has a moderate dormancy effect, which makes it a promising candidate gene for moderate seed dormancy in barley cultivar development. The fine mapping of SD2 is required for efficient manipulation of SD2 in breeding and would facilitate the study of dormancy in barley. Ten different Morex isolines were generated, including regenerated Morex, of which nine lines had duplicates. The isolines together with Steptoe and Morex were grown in growth room and field environments for 2 years (2000 and 2001). In the growth room, relatively low growing temperatures (25 degrees C day/15 degrees C night) were employed to promote seed dormancy development. Seed germination percentage, determined at different post-harvest after-ripening periods, was used to measure seed dormancy. Fine mapping using the substitution mapping method based on differences among isolines resolved the SD2 QTL into an 0.8-cM interval between molecular markers MWG851D and MWG851B near the chromosome 7 (5H) L telomere. Relatively low temperatures (< or =25 degrees C) during seed development promoted the expression of the SD2 dormancy QTL. The chromosome region above the MWG851D-MWG851B interval might play a role in reducing barley seed dormancy during after-ripening.  相似文献   

5.
Patterns of seed after-ripening in Bromus tectorum L   总被引:1,自引:0,他引:1  
For grass seeds that lose dormancy through after ripening indry storage, the probability of germination following a particularwetting event can be predicted only if the relationship betweenstorage temperature and change in after-ripening status is known.This study examined patterns of seed dormancy loss in Bromustectorum L., quantifying changes in germination percentage,speed, and uniformity through time. Seed collections from threesemi-arid habitats were stored at temperatures from 10–40C. At monthly intervals, subsamples were incubated at 5/15,10/20, 15/25, and 20/30 C. For recently harvested seeds, germinationpercentage, mean germination time, and days between 10% and90% of total germination (D90–D10) ranged from 1–75%,10–24 d, and 10–20 d, respectively. Recently harvestedseeds were generally most dormant, slowest to germinate andleast uniform at high incubation temperatures. In contrast,after ripened seeds for all collections had nearly 100% germination,mean germination times <5 d, and D90–D10 values <5d. Three indices were used to characterize after-ripening ratesfor each seedlot at each incubation temperature. The mean dormancyperiod, the mean rate index, and the mean uniformity index definedthe storage period required for seedlots to become half as dormantas at harvest, to progress half-way to the fastest speed, andto progress half-way to the greatest uniformity, respectively.Seeds required longer storage to germinate uniformly than togerminate completely or quickly, because germination time-coursecurves for incompletely after-ripened seeds were positivelyskewed rather than sigmoidal. Mathematically, the three indiceswere described as negative exponential functions of storagetemperature, which suggests that after-ripening is likely completedin late summer or early autumn regardless of summer conditions. Key words: Seed dormancy, germination timing  相似文献   

6.
Seed dormancy is one of the most important traits in germination process to control malting and pre-harvest sprouting in barley (Hordeum vulgare L.). EST based linkage maps were constructed on seven recombinant inbred (RI) and one doubled haploid (DH) populations derived from crosses including eleven cultivated and one wild barley strains showing the wide range of seed dormancy levels. Seed dormancy of each RI and DH line was estimated from the germination percentage at 5 and 10 weeks post-harvest after-ripening periods in 2003 and 2005. Quantitative trait loci (QTLs) controlling seed dormancy were detected by the composite interval mapping procedure on the RI and DH populations. A total of 38 QTLs clustered around 11 regions were identified on the barley chromosomes except 2H among the eight populations. Several QTL regions detected in the present study were reported on similar positions in the previous QTL studies. The QTL on at the centromeric region of long arm of chromosome 5H was identified in all the RI and DH populations with the different degrees of dormancy depth and period. The responsible gene of the QTL might possess a large allelic variation among the cross combinations, or can be multiple genes located on the same region. The various loci and their different effects in dormancy found in the barley germplasm in the present study enable us to control the practical level of seed dormancy in barley breeding programs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Analyses of abscisic acid (ABA), ent -kaurenoids and gibberellins (GAs) showed that there were major changes in the contents of these compounds associated with germination of after-ripened barley ( Hordeum vulgare cv. Schooner and cv. Proctor) grain but not in hydrated dormant grain. Embryos from dormant and after-ripened dry grain contained similar amounts of ABA, of ent -kaurenoids and of GAs, determined by gas chromatography-mass spectrometry-selected ion monitoring. In embryos of after-ripened grain, ABA content decreased rapidly after hydration and ABA appeared to be metabolized (inactivated) to phaseic acid (PA) rather than diffusing into the endosperm or the surrounding medium as previously thought. Similar changes in ABA occurred in hydrated dormant grain during germination in darkness. Accumulation of ent -kaurenoids and GAs, including GA1, the first biologically active GA in the early 13-hydroxylation biosynthetic pathway, occurred to a much greater extent in after-ripened than in dormant grain and these changes occurred mainly after 18 h of hydration when ABA had already decreased and germination was occurring. The block in ent -kaurenoid and GA synthesis in dormant grain appeared to occur prior to ent -kaurene in the biosynthetic pathway. These results are consistent with the view that ABA is the primary effector of dormancy and that after-ripening involves the development of the ability to reduce the amount of ABA quickly following hydration. Accumulation of GAs does not appear to be causally related to loss of dormancy but it does appear to be related to germination.  相似文献   

8.
White light strongly promotes dormancy in freshly harvested cereal grains, whereas dark and after-ripening have the opposite effect. We have analyzed the interaction of light and after-ripening on abscisic acid (ABA) and gibberellin (GA) metabolism genes and dormancy in barley (Hordeum vulgare 'Betzes'). Analysis of gene expression in imbibed barley grains shows that different ABA metabolism genes are targeted by white light and after-ripening. Of the genes examined, white light promotes the expression of an ABA biosynthetic gene, HvNCED1, in embryos. Consistent with this result, enzyme-linked immunosorbent assays show that dormant grains imbibed under white light have higher embryo ABA content than grains imbibed in the dark. After-ripening has no effect on expression of ABA biosynthesis genes, but promotes expression of an ABA catabolism gene (HvABA8'OH1), a GA biosynthetic gene (HvGA3ox2), and a GA catabolic gene (HvGA2ox3) following imbibition. Blue light mimics the effects of white light on germination, ABA levels, and expression of GA and ABA metabolism genes. Red and far-red light have no effect on germination, ABA levels, or HvNCED1. RNA interference experiments in transgenic barley plants support a role of HvABA8'OH1 in dormancy release. Reduced HvABA8'OH1 expression in transgenic HvABA8'OH1 RNAi grains results in higher levels of ABA and increased dormancy compared to nontransgenic grains.  相似文献   

9.
The germ aleurone over the embryonic axis of barley was examinedin strips of tissue peeled off harvest-ripe grains. The germaleurone is only one cell thick but resembles 'normal' aleuronein being composed of living cells with dense, lipid-rich cytoplasmand thick walls containing phenolic material. In contrast tothe cells of the 'normal' aleurone, germ aleurone cells containvery few phytin or protein deposits. When the germ aleuroneis ruptured during germination, the walls at the torn edge becomethickened with shiny golden-brown material, and 'sealed' tothe testa. Two days after germination, lignin can be detectedin the walls of a single row of germ aleurone cells adjoiningthe scutellum. The role of the germ aleurone in defence againstmicroorganisms is discussed. It is suggested that the metabolicactivities in the germ aleurone in imbibed grains compete withthe embryo for oxygen, and thus may be one of the factors whichdetermine whether a grain germinates or remains dormant.Copyright1994, 1999 Academic Press Barley, Hordeum vulgare L., germ aleurone, histochemistry, defence mechanism, lignin, dormancy, microorganisms, pre-mature germination  相似文献   

10.
11.
Preharvest sprouting (PHS) can be a problem in barley (Hordeum vulgare L.) especially malting barley, since rapid, uniform, and complete germination are critical. Information has been gained by studying the genetics of dormancy (measured as germination percentage, GP). The objective of this study was to determine if the quantitative trait loci (QTLs) discovered in previous research on dormancy are related to PHS. PHS was measured as sprout score (SSc) based on visual sprouting in mist chamber-treated spikes and as alpha-amylase activity (AA) in kernels taken from mist chamber-treated spikes that showed little or no visible sprouting. GP was also measured. All traits were measured at 0 and 14 days after physiological maturity. Evaluation of the spring six-row cross, Steptoe (dormant)/Morex (non-dormant) doubled haploid mapping population grown in greenhouse and field environments revealed QTL regions for SSc, AA, and GP on five, four, and six of the seven barley chromosomes, respectively. In total, seven and eight regions on five and six chromosomes had effects ranging from 4 to 31% and 3 to 39% on PHS and dormancy, respectively. One chromosome 3H and three chromosome 5H QTLs had the greatest effects. All PHS QTLs coincide with known dormancy QTLs, but some QTLs appear to be more important for PHS than for dormancy. Key QTLs identified should benefit breeding of barley for a suitable balance between PHS and dormancy.  相似文献   

12.
Seed of Avena fatua were shown to exhibit a characteristic loss of dormancy during dry storage at 25 C, whereas similar seed stored at 5 C maintained dormancy. 2-Chloroethylphosphonic acid was shown to increase germination of partly dormant seed imbibed under certain temperature regimes; a similar effect could not be established for fully dormant or fully nondormant seed. Using gas-liquid chromatography, natural ethylene levels were followed during imbibition of fully dormant and nondormant seed. A large peak in production was observed in the period prior to radicle emergence in the case of the nondormant seed. Measurements of ethylene production taken at 15 C, following periods of after-ripening in moist soil at either 5 or 25 C, indicated that endogenous production was unlikely to be a main cause of dormancy breakage in this species. The possibility that endogenous ethylene could play a role in natural dormancy breakage in aged seeds is discussed. The practical possibilities of 2-chloroethylphosphonic acid as a dormancy breaking agent in a field situation are outlined.  相似文献   

13.
Seed dormancy is an important trait in wheat (Trticum aestivum L.) and it can be released by germination-stimulating treatments such as after-ripening. Previously, we identified proteins specifically associated with after-ripening mediated developmental switches of wheat seeds from the state of dormancy to germination. Here, we report seed proteins that exhibited imbibition induced co-regulation in both dormant and after-ripened seeds of wheat, suggesting that the expression of these specific proteins/protein isoforms is not associated with the maintenance or release of seed dormancy in wheat.  相似文献   

14.
Based on physiological and molecular differences associatedwith the germination of after-ripened and dormant caryopsesand excised embryos, it has been hypothesized that various methodsof after-ripening are the only treatments that facilitate thetransition of dormant wild oat embryos to a non-dormant state.To further investigate this hypothesis, analytical methods wereused to evaluate physical and temporal changes associated withgermination and subsequent growth of after-ripened and dormantexcised embryos (AR-embryos and D-embryos, respectively) inducedto germinate with fructose (Fru) and/or gibberellic acid (GA).While chemical treatments of Fru, GA, and Fru+GA have littleeffect on the germination and short-term growth of AR-embryos,they do induce germination of D-embryos. Growth following germinationof D-embryos varied according to treatment with the combinationof Fru+GA inducing the greatest growth over the duration ofthe experiment. Even considering differences in the time tocomplete germination, growth of D-embryos was not comparablewith that of AR-embryos. This provides physical evidence thatchemical treatments induce germination without fulfilling therequirements for normal after-ripening-enhanced germination/growth,and indicates that fructose and/or gibberellic acid do not removethe dormancy-block or rate limiting step in the same manneras after-ripening. Avena fatua ; after-ripening; dormancy; fructose; germination; gibberellic acid; wild oats  相似文献   

15.
Early seed development was studied in 17 genotypes of barley,Hordeum vulgare L., and 11 genotypes of rye, Secale cerealeL. The numbers of cells and nuclei in the embryos and endospermsof developing seeds were scored daily for 5 days after selfpollination. For embryos, the mean cell doubling times variedfrom 9.2–12.9 h for barley and 15.7–22.7 h for rye.Endosperm mitotic cycle times of both species were shortestover the first 24 h after pollination but then became longer.A non-linear correlation was found between the number of embryocells and the number of endosperm nuclei in barely and rye andis similar to that for other members of the Triticeae. Hordeum vulgare L., Secale cereale L., barley, rye, embryo, endosperm, mean cell doubling time  相似文献   

16.
? Seed dormancy can affect life history through its effects on germination time. Here, we investigate its influence on life history beyond the timing of germination. ? We used the response of Arabidopsis thaliana to chilling at the germination and flowering stages to test the following: how seed dormancy affects germination responses to the environment; whether variation in dormancy affects adult phenology independently of germination time; and whether environmental cues experienced by dormant seeds have an effect on adult life history. ? Dormancy conditioned the germination response to low temperatures, such that prolonged periods of chilling induced dormancy in nondormant seeds, but stimulated germination in dormant seeds. The alleviation of dormancy through after-ripening was associated with earlier flowering, independent of germination date. Experimental dormancy manipulations showed that prolonged chilling at the seed stage always induced earlier flowering, regardless of seed dormancy. Surprisingly, this effect of seed chilling on flowering time was observed even when low temperatures did not induce germination. ? In summary, seed dormancy influences flowering time and hence life history independent of its effects on germination timing. We conclude that the seed stage has a pronounced effect on life history, the influence of which goes well beyond the timing of germination.  相似文献   

17.
18.
Dormancy in seeds of hazel (Corylus avellana L.) and beech (Fagussylvatica L.) has been studied with special reference to changesin growth-promoting and inhibiting substances during after-ripening.About 12 weeks at low temperature and under moist conditionsis necessary for complete after-ripening. Gibberellic acid,kinetin, and thiourea stimulate germination in dormant seedsbut have no effect on nuts with the pericarp intact. Gibberellin‘D’ is ten times more active than gibberellic acid.Bio-assays, following chromatographic fractionation of seedextracts, have revealed no significant changes in the concentrationsof auxins and inhibitors during after-ripening. Dwarf maize-leafsection assays have revealed low concentrations of gibberellin-likesubstances in purified extracts of chilled, dormant hazel seedbut no gibberellin activity in extracts of dormant seed. Gibberellinsare present in both dormant and germinating beech seeds butthere appear to be differences in the chromatographic patternof activity. The possible role of endogenous gibberellins inthe after-ripening process is discussed.  相似文献   

19.
At harvest, barley seeds are dormant because their germination is difficult above 20 degrees C. Incubation of primary dormant seeds at 30 degrees C, a temperature at which they do not germinate, results in a loss of their ability to germinate at 20 degrees C. This phenomenon which corresponds to an induction of a secondary dormancy is already observed after a pre-treatment at 30 degrees C as short as 4-6 h, and is optimal after 24-48 h. It is associated with maintenance of a high level of embryo ABA content during seed incubation at 30 degrees C, and after seed transfer at 20 degrees C, while ABA content decreases rapidly in embryos of primary dormant seeds placed directly at 20 degrees C. Induction of secondary dormancy also results in an increase in embryo responsiveness to ABA at 20 degrees C. Application of ABA during seed treatment at 30 degrees C has no significant additive effect on the further germination at 20 degrees C. In contrast, incubation of primary dormant seeds at 20 degrees C for 48 and 72 h in the presence of ABA inhibits further germination on water similarly to 24-48 h incubation at 30 degrees C. However fluridone, an inhibitor of ABA synthesis, applied during incubation of the grains at 30 degrees C has only a slight effect on ABA content and secondary dormancy. Expression of genes involved in ABA metabolism (HvABA8'OH-1, HvNCED1 and HvNCED2) was studied in relation to the expression of primary and secondary dormancies. The results presented suggest a specific role for HvNCED1 and HvNCED2 in regulation of ABA synthesis in secondary seed dormancy.  相似文献   

20.
Callus Induction and Plant Regeneration from Barley Mature Embryos   总被引:3,自引:0,他引:3  
LUPOTTO  E 《Annals of botany》1984,54(4):523-530
Callus cultures were induced starting from excised mature embryosin spring barley, Hordeum vulgare cv Maxima On a medium containinga high level of auxin, a first primary callus was induced whichwas friable, unorganized and capable of direct plant regenerationin the tested conditions This callus type was characterizedby fast growth and high variability in chromosome number Subsequently,a secondary callus type arose from the primary calli subculturedon the same medium in the light This callus type was white andcompact and consisted predominantly of diploid cells When transferredto hormone-free medium it gave rise to green shoots Completerooting of the shoots was achieved on half-strength basal mediumfollowed by exposure to higher light intensity Regenerated plantletscould then be transferred directly into soil without sufferingany loss in vitality Although showing different degrees in morphologicalvariability, they all maintained the diploid chromosome number Hordeum vulgare L, spring barley, morphogenic calli, organogenesis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号