首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
Three flavones, 5,7-dihydroxy-2',3',4',5'-tetramethoxyflavone, 5,4'-dihydroxy-7,2',3',5'-tetramethoxyflavone, and 5,7,4'-trihydroxy-2',3',5'-trimethoxyflavone were isolated from the leaf exudate of Psiadia punctulata, together with the previously reported 5-hydroxy-7,2',3',4',5'-pentamethoxyflavone and 5,7,3'-trihydroxy-2',4',5'-trimethoxyflavone. The two phenylpropenoids, Z-docosyl-p-coumarate and E-docosyl-p-coumarate were also isolated. The structures were determined on the basis of spectroscopic evidence.  相似文献   

10.
Rhizobium leguminosarum produced a factor(s) that caused thick, short roots (Tsr phenotype) as well as root hair induction (Hai phenotype) and deformation (Had phenotype) in Vicia sativa plants upon incubation with root exudate or with one of the nod gene inducers naringenin or apigenin; this was a nodDABC gene-dependent process. Detection of the Hai and Had phenotypes was much more sensitive than that of the Tsr phenotype.  相似文献   

11.
Jasmonates and salicylic acid are considered to be signal molecules that induce a variety of plant genes involved in wound or defence response, as well as affecting nos promoter activity. In this paper we examined whether these chemicals could also affect nod genes from isogenic rhizobia strains. Isogenic strains contain the Rhizobium leguminosarum nodA promoter fused to the lacZ gene of Escherichia coli and differ only in the source of the regulatory nodD gene. Naringenin, jasmonic acid and methyl jasmonate induced expression of nod genes in strain RBL1284 and salicylic acid showed no activity alone or when used in combination with other compounds; addition of naringenin + jasmonic acid produced a synergistic effect. Results obtained with strain RBL5284 were similar to those for RBL1284 albeit the combination of naringenin with the other compounds markedly inhibited nod gene expression. Whereas RBL5283 responded to naringenin with a strong induction, jasmonic acid, methyl jasmonate or salicylic acid showed no significant responses. The inhibitory effect of salicylic acid on nod gene expression indicates that the induction mechanism of jasmonic acid, methyl jasmonate, N-propyldihydrojasmonate and naringenin is probably different from that of salicylic acid.  相似文献   

12.
A 3.2kb fragment of DNA cloned from Rhizobium leguminosarum has been shown to contain the genes necessary for the induction of root hair curling, the first observed step in the infection of leguminous plants by R. leguminosarum. The DNA sequence of this region has been determined and three open reading frames were identified: genes corresponding to these open reading frames have been called nodA, nodB and nodC and are transcribed in that order. Mutations within the nodC gene completely blocked root hair curling. However, a subcloned fragment containing only the nodC gene did not induce normal root hair curling (although some branching was observed), indicating that the nodA and B genes may also be required for normal root hair curling. From an analysis of the predicted amino acid sequences of the nodAB and C genes it appeared unlikely that their products are secreted; therefore it is concluded that the induction of root hair curling could be due to a secreted metabolite.  相似文献   

13.
从我国蒺藜科特有属植物四合木(Taraena mongolica Maxim)的全株中首次得到了五种化合物。应用光谱等检测方法,对其结构进行了鉴定。分别鉴定为:十四碳酸月桂醇酯(1)、羽扇豆醇(2)、β-谷甾醇(3)、5,7,3',4'-四羟基-3-甲氧基黄酮(4)、5,7,4’-三羟基-3,3’-二甲氧基黄酮(5)。上述成分均为首次从四合木中得到。其中5,7,3’,4'-四羟基-3-甲氧基黄酮表现出较高的抗氧化活性。  相似文献   

14.
15.
Rhizobium promoters involved in the formation of root nodules on leguminous plants are activated by flavonoids in plant root exudate. A series of Rhizobium strains which all contain the inducible Rhizobium leguminosarum nodA promoter fused to the Escherichia coli lacZ gene, and which differ only in the source of the regulatory nodD gene, were recently used to show that the regulatory nodD gene determines which flavonoids are able to activate the nodA promoter (HP Spaink, CA Wijffelman, E Pees, RJH Okker, BJJ Lugtenberg 1987 Nature 328: 337-340). Since these strains therefore are able to discriminate between various flavonoids, they were used to determine whether or not plants that are nodulated by R. leguminosarum produce different inducers. After chromatographic separation of root exudate constituents from Vicia sativa L. subsp. nigra (L.), V. hirsuta (L.) S.F. Gray, Pisum sativum L. cv Rondo, and Trifolium subterraneum L., the fractions were tested with a set of strains containing a nodD gene of R. leguminosarum, R. trifolii, or Rhizobium meliloti, respectively. It appeared that the source of nodD determined whether, and to what extent, the R. leguminosarum nodA promoter was induced. Lack of induction could not be attributed to the presence of inhibitors. Most of the inducers were able to activate the nodA promoter in the presence of one particular nodD gene only. The inducers that were active in the presence of the R. leguminosarum nodD gene were different in each root exudate.  相似文献   

16.
Flavonoids from the stem bark of Bolusanthus speciosus   总被引:1,自引:0,他引:1  
Three flavonoids (bolusanthols A-C), viz an isoflavan and two prenylated isoflavanones, were isolated from the stem bark of Bolusanthus speciosus in addition to four known flavonoids, 5,7,3'-trihydroxy-4'-methoxy-5'-methoxy-gamma,gamma-dimethylallylisoflavanone, 5,7,2'-trihydroxy-4'-methoxy-6,5'-di(gamma,gamma)-dimethylallyl)isoflavanone, 3,5,7,3',4'-pentahydroxy-6-gamma,gamma-dimethylallylflavone and 5,7,2',4'-tetrahydroxy-8,3'-di(gamma,gamma-dimethylallyl)-isoflavanone. The structure of the new compounds were determined to be 4,2',3',4'-tetrahydroxy-6,7-methylenedioxyisoflavan (bolusanthol A), 5,7,3',4'-tetrahydroxy-5'-gamma,gamma-dimethylallylisoflavanone (bolusanthol B), and 5,7,4'-trihydroxy-6,3'-di(gamma,gamma-dimethylallyl)isoflavanone (bolusanthol C) by spectroscopic methods.  相似文献   

17.
Flavonoids including the aglycones, hesperetin (HT; 5,7,3'-trihydroxy-4'-methoxy-flavanone), and naringenin (NE; 5,7,4'-trihydroxy flavanone) and glycones, hesperidin (HD; 5,7,3'-trihydroxy-4'-methoxy-flavanone 7-rhamnoglucoside) and naringin (NI; 5,7,4'-trihydroxy flavanone 7-rhamno glucoside), were used to examine the importance of rutinose at C7 on the inhibitory effects of flavonoids on lipopolysaccharide (LPS)-induced nitric oxide production in macrophages. Both HT and NE, but not their respective glycosides HD and NI, induced heme oxygenase 1 (HO-1) protein expression in the presence or absence of LPS and showed time and dose-dependent inhibition of LPS-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in RAW264.7, J774A.1, and thioglycolate-elicited peritoneal macrophages. Additive inhibitory effect of an HO-1 inducer hemin and NE or NI on LPS-induced NO production and iNOS expression was identified, and HO enzyme inhibitor tin protoporphyrin (SnPP) attenuated the inhibitory effects of HT, NE, and hemin on LPS-induced NO production. Both NE and HT showed no effect on iNOS mRNA and protein stability in RAW264.7 cells. Removal of rutinose at C7 of HD and NI by enzymatic digestion using hesperidinase (HDase) and naringinase (NIase) produce inhibitory activity on LPS-induced NO production, according to the production of the aglycones, HT and NE, by high-performance liquid chromatography (HPLC) analysis. Furthermore, the amount of NO produced by LPS or lipoteichoic acid (LTA) was significantly reduced in HO-1-overexpressing cells (HO-1/RAW264.7) compared to that in parental cells (RAW264.7). Results of the present study provide scientific evidence to suggest that rutinose at C7 is a negative moiety in flavonoid inhibition of LPS-induced NO production, and that HO-1 is involved in the inhibitory mechanism of flavonoids on LPS-induced iNOS and NO production.  相似文献   

18.
19.
20.
The perennial American desert shrub, Gutierrezia microcephala, contains 20 flavonol methyl ethers displaying nine different oxygenation patterns. These include 11 new flavonols: 5,7-dihydroxy-3,6,8,3′,4′,5′-hexamethoxyflavone, 5,7,4′-trihydroxy-3,6,8,3′,5′-pentamethoxyflavone, 5,7,3′-trihydroxy-3,6,8,4′,5′-pentamethoxyflavone, 5,7,2′,4′-tetrahydroxy-3,6,8,5′-tetramethoxyflavone, 5,7,3′,4′-tetrahydroxy-3,6,8-trimethoxyflavone, 5,7,8,3′,4′-pentahydroxy-3,6-dimethoxyflavone, 3,5,7,3′,4′-pentahydroxy-6,8-dimethoxyflavone, 5,7,4′-trihydroxy-3,6,8-trimethoxyflavone, 5,7,8,4′-tetrahydroxy-3,3′-dimethoxyflavone, 5,7,8,3′,4′-pentahydroxy-3-methoxyflavone and 5,7,8,4′-tetrahydroxy-3-methoxyflavone. In addition, the following known flavonols were isolated: 5,7-dihydroxy-3,8,3′,4′,5′-pentamethoxyflavone, 5,7,4′-trihydroxy-3,8-dimethoxyflavone, 5,7,4′-trihydroxy-3,8,3′-trimethoxyflavone, 5,7,3′,4′-tetrahydroxy-3,8-dimethoxyflavone, 5,7,4′-trihydroxy-3,6,3′-trimethoxyflavone, 5,7,3′,4′-tetrahydroxy-3-methoxyflavone, 5,4′-dihydroxy-3,6,7,8,3′-pentamethoxyflavone, 5,7,4′-trihydroxy-3,6,8,3′-tetramethoxyflavone and 3,5,7,4′-tetrahydroxy-6,8,3′-trimethoxyflavone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号