首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mast cells are secretory cells strategically located in the vicinity of blood vessels where they can readily initiate and modulate various inflammatory processes, including plasma exudation and leukocyte infiltration. We have previously shown that 50% of the neutrophil influx during immune complex peritonitis in mice is due to mast cells. Eicosanoids are important mediators of various inflammatory processes including neutrophil infiltration. The possibility that mast cells are essential for the production of leukotrienes (LT) involved in the elicitation of neutrophils in immune complex peritonitis was investigated in mast cell-deficient, WBB6F1-W/WV, and normal, WBB6F(1-)+/+, mice. The time course and amounts of immunoreactive PGE2, 6-keto-PGF1 alpha, and TX3B2 released into the peritoneal exudates were similar in both sets of mice. LTB4 and LTC4 levels, however, were twofold higher in +/+ than in W/WV mice 2 h after stimulation. HPLC analysis of the peritoneal exudate confirmed the presence of leukotrienes. The 5-lipoxygenase inhibitor A-63162 blocked leukotriene production in a dose-dependent manner in both sets of mice. However, this compound caused a significant reduction (60%) of neutrophil infiltration only in WBB6F(1-)+/+ but not in the mast cell-deficient mice. Mast cell reconstitution of WBB6F1-W/WV mice restored the effect of A-63162 on PMN recruitment. These data suggest that mast cells in the vicinity of blood vessels are important for the synthesis of leukotrienes responsible for PMN recruitment.  相似文献   

2.
The ability of partially purified human and guinea-pig haematogenous cell populations, when cultured in vitro, to metabolise arachidonic acid (AA) has been studied. Supernatants from 24 hour cell culture have been subjected to analysis for products of AA metabolism by gas chromatography with electron-capture detection. The cell types studied were human peripheral blood monocytes (both glass adherent and non-adherent), neutrophils, eosinophils and leukemia leucocytes; thoracic duct lymphocytes and lung alveolar macrophages. From the guinea-pig, induced and non-induced macrophage or neutrophil enriched peritoneal exudate populations, lymph node cells, peritoneal eosinophils and peripheral blood platelets were examined. Supernatants were assayed for the presence of PGE2, PGD2, PGF2 alpha, TXB2 and 6-keto-PGF1 alpha. In all types studied PGE2 and TXB2 were the major products formed. The identification of PGE2 and TXB2 was confirmed by GC/MS with multiple ion monitoring. The results have been compared with other reports and their possible significance discussed in relation to the proposed role of prostaglandins as mediators and modulators in immunopathology.  相似文献   

3.
A method for the preparation of a highly purified sample of rabbit blood monocytes is described. The metabolism of arachidonic acid (AA) in these cells was studied. Mononuclear cells were prepared by centrifugation on Ficoll-Paque gradients and the monocytes were obtained by further centrifugation and adherence onto plastic culture dishes. These procedures provided a preparation which contained 95% monocytes (non-specific esterase positive). Incubation of [1-14C]-AA with these cells produced four major metabolites which were separated by TLC; these corresponded to prostaglandin (PG) D2, thromboxane (TX) B2, 12-hydroxyheptadecatrienoic acid (HHT) and 12-/15-hydroxyeicosatetraenoic acid (HETE). A minor product which co-migrated with PGE2 was also detected but neither 6-keto-PGF1 alpha nor PGF2 alpha were detected. Also, there was no evidence of the formation of 5-lipoxygenase products (5-HETE and LTB4) by rabbit monocytes with or without calcium-ionophore A23187-stimulation. The production of PGD2, TXB2 and PGE2 was further confirmed by analyzing [3H]-AA metabolites using high-performance liquid chromatography (HPLC) with tritiated standards as references. The biosynthesis of these compounds from endogenous substrate in A23187-stimulated monocytes was confirmed by specific radioimmunoassays with or without prior HPLC separation. The synthesis of immunoreactive LTB4 and LTC4 by A23187-stimulated cells was also monitored and found to be relatively low. The synthesis of PGD2, TXB2 and PGE2 from both exogenous and endogenous substrate was suppressed by treatment of the monocytes with indomethacin (10(-6) M).  相似文献   

4.
Mast cells and macrophages were isolated from human lung tissues by using density gradient centrifugation, cell sorter, and adherence techniques. Passively sensitized mast cells in the absence of exogenous arachidonic acid (AA) released leukotriene (LT)C4, LTD4, PGD2, and thromboxane-B2 when challenged with Ag, and in the presence of AA, released 5-hydroxyeicosatetraenoic acid (HETE) and 15-HETE in addition to the above metabolites. Passively sensitized macrophages did not release significant amounts of AA metabolites when challenged with Ag. However, these cells released LTB4, LTC4, LTD4, LTE4, 5-HETE, PGE2 and 6-keto-PGF1 alpha when co-incubated with activated mast cells. During co-incubation, mast cells also generated greater amount of AA metabolites than when they were activated alone. The stimulatory action of mast cells on macrophages was shown to be due to the extracellular factor(s) present in the supernatant of the activated mast cells. Both heat and trypsin inhibited the biologic activity of mast cell-derived stimulatory factor. In addition, extraction of mast cells' materials with chloroform or ether showed no activity associated with the organic phase, suggesting it possibly possesses a protein nature, such as peptides, protease, or peptidase. These results suggest that mast cell-macrophage interaction might be important in the generation of multiple mediators in the airways during immediate hypersensitivity reactions.  相似文献   

5.
Leukotriene B(4) (LTB(4)) biosynthesis by polymorphonuclear leukocytes (PMNs) is an important factor of inflammatory responses. PMNs also release LTA(4), an unstable intermediate that can be taken up by neighboring cells and metabolized into LTC(4). Most studies of LT synthesis have been carried out using human PMNs, but very little information is available about mouse PMNs. Mouse bone marrow PMNs were found to synthesize eicosanoids upon stimulation with A23187, fMLP, or zymosan. The major eicosanoids produced are LTB(4) and 5-hydroxyeicosatetraenoic acid, with some nonenzymatic products of LTA(4) hydrolysis. No cysteinyl leukotrienes were produced, in contrast to what was observed with human blood neutrophil preparations. Human megakaryoblast-like MEG-01 cells synthesized thromboxane B(2) and prostaglandin E(2) in response to A23187 but produced no 5-lipoxygenase (5-LO)-derived eicosanoids. When mouse bone marrow cells (mBMCs) and MEG-01 cells were stimulated during coincubation, LTC(4) and LTD(4) were produced. Mouse peritoneal macrophages from 5-LO-deficient mice were able to synthesize LTC(4) when incubated with mBMCs from wild-type mice, demonstrating transcellular exchange of LTA(4) from mBMCs into murine peritoneal macrophages. These data demonstrate that murine bone marrow PMNs are a valid model for the study of LT biosynthesis, which now offers the possibility to investigate specific biochemical pathways through the use of transgenic mice.  相似文献   

6.
The effects of antiinflammatory steroids on arachidonic acid metabolite release from human lung fragments were analyzed. Incubation of lung fragments for 24 hr with 10(-6) M dexamethasone inhibited the net release of the prostacyclin metabolite 6-keto-PGF1 alpha, PGE2, and PGF2 alpha from lung fragments stimulated with anti-IgE but failed to inhibit the anti-IgE-induced release of PGD2, TXB2, and iLTC4. The IC50 of dexamethasone for inhibition of both spontaneous and anti-IgE-induced 6-keto-PGF1 alpha release was approximately 2 X 10(-8) M, and a 6-hr preincubation with the drug was required for 50% inhibition of prostaglandin release. Other agents were tested for activity in stimulating arachidonic acid metabolite release from human lung fragments. FMLP (fmet-leu-phe) stimulated the release of all metabolites tested (6-keto-PGF1 alpha, PGD2, PGE2, PGF2 alpha, TXB2, iLTC4); platelet-activating factor (PAF), but not lysoPAF, stimulated the release of PGD2, TXB2, and iLTC4. In contrast to the case with anti-IgE, where dexamethasone failed to inhibit net PGD2 and TXB2 release, the steroid inhibited the release of these metabolites stimulated by both FMLP and PAF. The steroid inhibited iLTC4 release induced by the highest concentration of PAF (10(-6)M) but did not inhibit iLTC4 release stimulated by either 10(-7) M PAF, FMLP, or anti-IgE. Because neither FMLP nor PAF caused the release of PGD2 or TXB2 from purified human lung mast cells, and because they also failed to induce histamine release from lung fragments, it is suggested that these stimuli produce PGD2 and TXB2 release in lung fragments through an action on a cell distinct from the mast cell. This suggestion is supported by the selective inhibition of the release of these arachidonic acid metabolites by dexamethasone. We suggest that the inhibitory action of steroids on arachidonic acid metabolite in human lung fragments contributes to their therapeutic efficacy in pulmonary diseases.  相似文献   

7.
THE acyl carrier coenzyme A (CoA) is involved in fatty acid metabolism. The carnitine/CoA ratio is of particular importance in regulating the transport of long-chain fatty acids into mitochondria for oxidation. Also CoA has a role in the formation and breakdown of products from both the cyclooxygenase and lipoxygenase pathways of the precursor arachidonic acid. In the present study the effect of 4 days feeding of 300 mg/kg/day of L-carnitine, acetyl Lcarnitine and propionyl L-carnitine on the basal and calcium ionophore (A23187) stimulated release of arachidonic acid metabolites from rat carrageenin elicited peritoneal cells was investigated. There were two series of experiments carried out. In the first, the harvested peritoneal cell population consisted of less than 90% macrophages and additional polymorphonuclear (PMN) leucocytes. The basal release of prostaglandin E(2) (PGE(2)), 6-ketoprostaglandin F(1alpha) (6-keto-PGF(1alpha)) and leukotriene B(4) (LTB(4)) was stimulated by all treatments. The A23187 stimulated release of 6-keto-PGF(1alpha) and LTB(4) was increased by all three compounds. The 6-keto-PGF(1alpha):TxB(2) and 6-keto-PGF(1alpha):LTB(4) ratios were increased by carnitine treatment. These results suggested that carnitine could modify the macrophage component of an inflammatory site in vivo. In the second series of experiments the harvested cell population was highly purified (>95% macrophages) and none of the compounds fed to the rats caused a change of either eicosanoid or TNFalpha formation. Moreover the 6-keto-PGF(1alpha):TxB(2) and 6-keto-PGF(1alpha):LTB(4) ratios were not enhanced by any of the compounds tested. It is conceivable that in the first series the increased ratios 6-keto-PGF(1alpha):TxB(2) and 6-keto-PGF(1alpha):LTB(4) reflected the effect of carnitine or its congeners on PMN leucocytes rather than on macrophages.  相似文献   

8.
M Ali  J W McDonald 《Prostaglandins》1980,20(2):245-254
Bovine gastric mucosal and muscle microsomes synthesize prostaglandins and thromboxane b/ (TXB2) from aratchidonic acid (AA). TXB2 and 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) were the majro products synthesized by pylorus, body, and cardiac region of the gastric mucosa. Gastric muscle mainly synthesized 6-keto-PGF1 alpha. TXB2 and 6-keto-PGF1 alpha synthesis occurs at an appreciable rate from endogenous precursors but more rapidly with added arachidonate. Prostaglandins E2, F2 alpha and D2 were synthesized in smaller amounts under the conditions studied.  相似文献   

9.
Y Denizot  P Feiss  N Nathan 《Cytokine》1999,11(4):301-304
In this study the authors assessed the sequential release of lipid mediators (TXB2, PGE2, 6-keto-PGF1alpha, LTB4, LTC4, PAF), pro-inflammatory cytokines (IL-6, IL-8, TNF-alpha) and anti-inflammatory cytokines (IL-4, IL-10) in 17 patients undergoing coronary artery bypass graft (CABG) with extracorporeal circulation (ECC). Time course of appearance of inflammatory mediators revealed the early and transient increase in lipid mediator plasma concentrations (6-keto-PGF1alpha, LTB4, LTC4, PAF) whereas cytokines (IL-6, IL-8, IL-10) were involved only in late pre- and post-operative periods. No variation of TXB2, PGE2, IL-4 and TNF-alpha levels were found. No correlation was documented between the levels of lipid mediators and pro- or anti-inflammatory cytokines suggesting that lipidic compounds are not implicated in the genesis of cytokines which appear much later involved. Despite the common use of high doses of aprotinin (a non-specific enzyme inhibitor) in hope to abrogate the inflammatory response to cardiopulmonary bypass procedure, this study reports the persistent release of several inflammatory compounds that might be involved in the post-CABG multiple organ failure syndromes.  相似文献   

10.
Resident peritoneal macrophages incubated with 3.5 x 10(-7) M Calcium ionophore A23187 in tumor cell growth medium (TGM) release large amounts of leukotriene (LT)E4 and an unidentified 5-lipoxygenase product, whereas A23187-stimulated macrophages produce in serum free medium LTD4, predominately. LTC4 and 3H-LTC4 incubated for 20 min at 37 degree C in serum containing TGM, convert into LTE4 and 3H-LTE4, respectively. Thus, LTC4 released from A23187-stimulated macrophages is an intermediate in TGM which rapidly converts into LTE4, probably because of the presence of gamma-glutamyl transpeptidase and cystenylglycinase in TGM. Macrophages express antitumor cytostatic activity towards P815 cells (49-53%) in a cocultured ratio (macrophage: tumor cell) 2:1 when stimulated with 3.5 x 10(-7) M A23187 in TGM. The 5-lipoxygenase inhibitor AA861 reverses the cytostatic activity by 42-58% and it inhibits also the formation of A23187-induced 5-lipoxygenase products from macrophages. Restoration of 38% macrophage- antitumor cytostatic activity by exogenous LTC4 (10(-8) M) indicates that LTC4 is an essential 5-lipoxygenase intermediate in the pathway of required signals underlying A23187-induced macrophage antitumor cytostatic activity. Macrophages not stimulated by A23187 do not express cytostatic activity in the presence of LTC4. This implies that besides LTC4, increased cytosolic [Ca2+] is required for A23187 induction of macrophage cytostatic activity.  相似文献   

11.
Metabolism of prostaglandin endoperoxide by microsomes from cat lung   总被引:1,自引:0,他引:1  
It has been reported that the prostaglandin (PG) precursor, arachidonic acid, produces divergent hemodynamic responses in the feline pulmonary vascular bed. However, the pattern of arachidonic acid products formed in the lung of this species is unknown. In order to determine the type and activity of terminal enzymes in the lung, prostaglandin biosynthesis by microsomes from cat lung was studied using the prostaglandin endoperoxide, PGH2, as a substrate. The major products of incubations of PGH2 with microsomes were thromboxane (TX) B2 (the major metabolite of TXA2), 6-keto-PGF1 alpha (the breakdown product of PGI2) and 12L-hydroxy-5,8,10-heptadecatrienoic acid (HHT). Formation of TXB2 was markedly reduced by imidazole. Tranylcypromine decreased the formation of TXB2 and HHT and inhibited the formation of 6-keto-PGF1 alpha. At low PGH2 concentrations, equal production of TXB2 and 6-keto-PGF1 alpha was observed. However, as PGH2 concentration increased, 6-keto-PGF1 alpha production approached early saturation while TXB2 production increased in a linear fashion. These results suggest that enzymatic formation of TXA2 and PGI2 is a function of substrate availability in the lung. These findings provide a possible explanation for the divergent hemodynamic responses to arachidonic acid infusions at high and low concentrations in the feline pulmonary vascular bed.  相似文献   

12.
High-performance liquid chromatography procedures were developed which separate leukotrienes (LTs), hydroxy-fatty acids (HETEs), prostaglandins (PGs), the stable metabolite of prostacyclin (6-keto-PGF1 alpha), the stable metabolite of thromboxane A2 (TXB2), 12-hydroxyheptadecatrienoic acid (HHT), and arachidonic acid (AA). Two methods employing reverse-phase columns are described. One method uses a radial compression system, the other a conventional steel column. Both systems employ methanol and buffered water as solvents. The radial compression system requires 60 min for separation of the AA metabolites, while the conventional system requires 100 min. Both methods provide good separation and recovery of 6-keto-PGF1 alpha, TXB2, PGE2, PGF2 alpha, PGD2, LTC4, LTB4, LTD4, LTE4, HHT, 15-, 12-, and 5-HETE; and AA. The 5S,12S-dihydroxy-6-trans, 8-cis, 10-trans, 14-cis-eicosatetraenoic acid (5S,12S-diHETE), a stereoisomer of LTB4, coelutes with LTB4. To determine the applicability of the methods to biologic systems, AA metabolism was studied in two models, guinea pig lung microsomes and rat alveolar macrophages. Both HPLC systems demonstrated good recovery and resolution of eicosanoids from the two biological systems. A simple evaporation technique for HPLC sample preparation, which avoids the use of chromatographic and other time-consuming methodology, is also described.  相似文献   

13.
Isolated rat Kupffer cells produced and released prostaglandin (PG) E2, 6-keto-PGF1 alpha, and thromboxane B2 (TXB2) in response to lipopolysaccharide (LPS) stimulation. This elevation of PGE2, 6-keto-PGF1 alpha and TXB2 in the medium was not observed when cells were cultured in the absence of extracellular calcium or in the presence of an extracellular calcium chelator, EGTA. An intracellular calcium antagonist, TMB-8, also suppressed the production of PGE2, 6-keto-PGF1 alpha and TXB2 in a concentration-dependent manner. The intra-cellular calcium concentration of Kupffer cells elevated early after the addition of LPS determined by the use of fura-2 and a fluorescence microscopy. Moreover, calmodulin inhibitors, W-7 and W-13, apparently inhibited the production of PGF2, 6-keto-PGF1 alpha and TXB2. All these results suggest that LPS-induced PG production by stimulated rat Kupffer cells may be regulated by a calcium-calmodulin pathway.  相似文献   

14.
Epidermal Langerhans cells are macrophage-like la+ leukocytes that are critically involved in cutaneous immune reactions. Because macrophages exert their immunoregulatory activity in part by generation of oxygenated arachidonic acid metabolites, we systematically studied arachidonic acid transformations by purified guinea pig Langerhans cells and compared them with mixed epidermal cells and Langerhans cell-depleted keratinocytes. Products formed from arachidonic acid by cell homogenates were measured after thin-layer or reverse-phase high-pressure liquid chromatographic separation. In addition, leukotriene B4 and C4 formation was assessed in supernatants of Ca ionophore A23187-challenged intact cells by radioimmunoassay. Mixed epidermal cells converted arachidonic acid predominantly via cyclooxygenase and 12-lipoxygenase pathways. The main products were prostaglandin D2 (PGD2) and 12-hydroxyeicosatetraenoic acid (12-Hete), although significant amounts of PGE2, PGF2 alpha, and 6-keto-PGF1 alpha were formed as well. PGD2 synthesis was dependent on the presence of reduced glutathione. The product spectrum formed by Langerhans cell-depleted keratinocytes was virtually indistinguishable from mixed epidermal cells. In contrast, Langerhans cells showed a markedly different metabolism of arachidonic acid. They exhibited an exceedingly high PGD2-generating capacity, whereas only minor amounts of 12-HETE and very low amounts of other prostaglandins were synthesized. The PGD2/12-HETE ratio was 1.22 for mixed epidermal cells and 4.37 for Langerhans cells. Leukotriene production from exogenous or endogenous arachidonic acid could not be demonstrated by either radioenzymatic or radioimmunologic detection methods. We conclude that guinea pig Langerhans cells transform arachidonic acid predominantly to PGD2, which might mediate significant immunoregulatory, inflammatory, and antitumoral activity in the skin.  相似文献   

15.
Mononuclear phagocytes are known to play a key role in various phlogistic reactions by synthesizing and releasing products that may potentiate or inhibit inflammatory processes. The expression of these products appears to be dependent on the source of the macrophage population as well as the stimulus employed. We have studied superoxide anion (O-2) production as well as the generation of PGE2, PGF2 alpha, and TXB2 from resident, oil-elicited and thioglycollate-induced peritoneal macrophages in mice in the presence and absence of chemotactic peptides. Production of O-2, occurred only in elicited macrophages stimulated with high concentrations of FMLP or C5a; resident cells stimulated with either of the chemotactic peptides were completely unresponsive. Although resident peritoneal macrophages incubated with chemotactic peptides did not generate O-2, these cells did secrete significant levels of PGE2, PGF2 alpha, and TXB2 in response to C5a. FMLP had no stimulatory effect. Elicited macrophages generated increased levels of PGE2 and PGF2 alpha when incubated with C5a. However, production of TXB2 was not stimulated. FMLP was inactive in stimulating PGE2, PGF2 alpha, and TXB2 in all types of macrophages studied. These studies indicate a heterogeneity in the production of inflammatory mediators from various macrophage populations in response to chemotactic factors.  相似文献   

16.
Exposure to ethanol in man has been linked to an alteration of the immune surveillance system and reduced ability of the macrophage to undergo phagocytosis. Since ethanol has been suggested to alter membrane function and inhibit the production of calcium ionophore stimulated synthesis of prostaglandins and leukotrienes by the human neutrophil and transformed murine mast cell, the dose response effect of ethanol on the biosynthesis of icosanoids by the peritoneal macrophage during zymosan phagocytosis was studied. Peritoneal macrophages from two inbred strains of mice derived from a common stock (HS) and selected for sensitivity to ethanol (short sleep [SS]/long sleep [LS]) were studied. Zymosan phagocytosis was found to lead to synthesis of LTC4 (70 ng/10(6) cells), 6-keto-PGF1 alpha (5 ng/10(6) cells) and PGE2 (3 ng/10(6) cells). For the HS macrophage, ethanol caused a dose dependent inhibition of these lipid mediators as well as inhibition of phagocytosis and release of beta-hexosaminidase. However, a difference was observed in arachidonate metabolism stimulated by phagocytosis between the LS and SS mice below 100 mM ethanol. The SS mouse had a 50% inhibition of cyclooxygenase products at 86 mM ethanol with no inhibition of lipoxygenase metabolites. The LS mice had a trend suggesting increased lipoxygenase metabolites below 100 mM ethanol. At these levels of ethanol which can be found in man, these results suggest there may be differential production of lipid mediators under genetic control.  相似文献   

17.
Alveolar macrophages obtained by lung lavage from rats were incubated with monoclonal mouse anti-DNP IgE and specific antigen (DNP-HSA) and were found to release a slow reacting substance (SRS), which was characterized by high performance liquid chromatography as leukotriene C4 (LTC)4. Alveolar macrophages incubated with 1 microM A23187 (calcium ionophore) released similar amounts of SRS (6.0 +/- 2.2 and 5.7 +/- 3.7 X 10(-10) mol of LTC4 per 5 X 10(6) alveolar macrophages, respectively). The optimal conditions and mechanism of LTC release by IgE and antigen were examined. LTC4 release was maximal when freshly retrieved alveolar macrophages were incubated for 20 min with 10 micrograms/ml IgE and then for 20 min with 100 ng/ml antigen or for 20 min with IgE and antigen that had been preincubated together for 30 min at room temperature. In addition, LTC4 release was maximal when cells were challenged with IgE and antigen in a protein-free balanced salt solution and when the cells were tumbled to prevent adherence. Dose response experiments revealed that macrophages released LTC4 when stimulated with as little as 10 ng IgE and 100 ng DNP-HSA. Alveolar macrophages did not release LTC when challenged with IgE or DNP-HSA alone. Activation of LTC4 release by IgE and antigen was rapid in onset (2.5 to 5 min), and washing to remove fluid phase IgE and antigen revealed that once activated, alveolar macrophages were capable of prolonged and continuous release of LTC4. Peritoneal lavage cells stimulated with IgE and antigen did not release SRS but could release SRS when incubated with A23187 (5.7 +/- 1.3 X 10(-10) mol LTC4/5 X 10(6) macrophages). A large variability existed between individual rats in the ability of their alveolar macrophages to be activated by IgE and antigen to release LTC4. DNP-HSA labeled with 125I was used to show formation of immune complexes of IgE and antigen when IgE and antigen were incubated together before macrophage challenge. IgE immune complexes containing as little as 2 ng of antigen elicited the release of LTC4 from alveolar macrophages. These data indicate that rat alveolar macrophages release primarily LTC4 when challenged with IgE immune complexes, and that the alveolar macrophage may differ in this respect from peritoneal macrophages that do not release detectable quantities of LTC4 when challenged under identical conditions.  相似文献   

18.
Large numbers of functional mast cells were obtained by bronchoalveolar lavage (BAL) of Macaca arctoides monkeys that had been infected with the nematode Ascaris suum. These lavage cells, of which 21% were mast cells, released histamine, LTC4, and PGD2 in a concentration-dependent fashion when challenged with ascaris antigen or antibody to human IgE. However, there was no release of histamine when these cells were challenged with compound 48/80. The amount of mediator released was highly dependent on the sensitivity of the cells to immunologic challenge, but was generally in the range of 2 to 5 micrograms histamine (30 to 70% of total), 20 to 80 ng LTC4, and 100 to 300 ng PGD2 per 10(6) mast cells when maximally challenged. Other eicosanoids measured were released only in much smaller quantities. Maximal values were 4 ng LTB4, 2 ng PGE2, and approximately 10 to 20 ng PGF2 alpha per 10(6) mast cells. The amount of LTC4 and PGD2 released correlated with the release of histamine, the calculated regression line indicating that 18 ng LTC4 and 50 ng PGD2 were released per microgram of histamine released. This correlation suggests that the majority of the LTC4 and PGD2 released was probably mast cell-derived. Further support for this conclusion was given by the observation that when lavage cells were fractioned on continuous Percoll gradients, the ability to release LTC4 and PGD2 on immunologic challenge coincided with the peak of mast cells.  相似文献   

19.
Prostaglandins have been implicated as possible modulators of the proliferation and differentiation of neoplastic cells. The aim of this work was to determine 6-keto-PGF1 alpha and TXB2 concentrations in the blood plasma and in the supernatant of 96 hour PHA stimulated and unstimulated leukaemic cell cultures of chronic lymphocytic leukaemia patients. 62 patients with CLL classified to the 1st or 4th stage according to RAI, and 23 healthy individuals were investigated. The blastogenic transformation was measured by the standard tritiated thymidine method. The quantity of 6-keto-PGF1 alpha and TXB2 was estimated by the isotopic method using a RIA-kit. In the 4th stage of CLL a low value of blastogenic transformation was observed, whereas in the 1st stage, the values were similar to those of the control group. It was shown that in the 4th stage of the disease an increase in the 6-keto-PGF1 alpha concentrations occurs in the blood plasma and the culture supernatant together with a significant decrease in TXB2 in the culture supernatant, whereas in the 1st stage a significant decrease in the 6-keto-PGF1 alpha as compared with those of the control group is noted. These results may indicate on antagonistic action of PGI2 and TXB2 in leukaemia cell proliferation.  相似文献   

20.
On incubation of resident mouse peritoneal macrophages with arachidonic acid several hydroxyacyl derivatives detectable in cellular supernatants are formed. As main products monohydroxyarachidonic acids (monoHETE's) were identified. In addition, smaller amounts of dihydroxyarachidonic acids (diHETE's) were formed. A detailed analysis of cell culture supernatants by reversed phase HPLC, normal phase HPLC in combination with UV-spectroscopy and combined gas-chromatography/masspectrometry revealed the presence of 5-, 8-, 12- and 15- monoHETE's, two distinct 5,12-diHETE's, several 8,15-diHETE's and 14,15-diHETE. Among the 5,12-diHETE's, only small amounts of a compound with the characteristics of LTB4 were detected. Under the conditions employed, the cyclooxygenase products PGE2 and PGI2 (as 6-keto-PGF1 alpha) were only minor metabolites. In contrast, when macrophage cultures were stimulated with the phagocytic stimulus zymosan, PGI2, PGE2 and LTC4 were found as the major conversion products of arachidonic acid, whereas mono- and diHETE's were not formed in detectable amounts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号