首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 10-kb region of the Bacillus subtilis genome that contains genes involved in biotin-biosynthesis was cloned and sequenced. DNA sequence analysis indicated that B. subtilis contains homologs of the Escherichia coli and Bacillus sphaericus bioA, bioB, bioD, and bioF genes. These four genes and a homolog of the B. sphaericus bioW gene are arranged in a single operon in the order bioWAFDR and are followed by two additional genes, bioI and orf2. bioI and orf2 show no similarity to any other known biotin biosynthetic genes. The bioI gene encodes a protein with similarity to cytochrome P-450s and was able to complement mutations in either bioC or bioH of E. coli. Mutations in bioI caused B. subtilis to grow poorly in the absence of biotin. The bradytroph phenotype of bioI mutants was overcome by pimelic acid, suggesting that the product of bioI functions at a step prior to pimelic acid synthesis. The B. subtilis bio operon is preceded by a putative vegetative promoter sequence and contains just downstream a region of dyad symmetry with homology to the bio regulatory region of B. sphaericus. Analysis of a bioW-lacZ translational fusion indicated that expression of the biotin operon is regulated by biotin and the B. subtilis birA gene.  相似文献   

2.
The nucleotide sequence of the biotin (bio) biosynthetic operon of Escherichia coli has been determined. The 5.8-kilobase region contains the five biotin operon genes, bioA, B, F, C, and D. and an open reading frame of unknown function. The operon is negatively regulated and divergently transcribed from a control region between the bioA and bioB genes. The product of the bioA gene, 7,8-diaminopelargonic acid aminotransferase, was discovered to be related to ornithine aminotransferase. The product of the bioF gene, 7-keto-8-aminopelargonic acid synthetase, was found to be similar to 5-aminolevulinic acid synthetase.  相似文献   

3.
Biotin synthetase (BS) catalyses the biotransformation of dethiobiotin (DTB) to biotin. Here we report the cloning, characterization and expression of the gene encoding BS of Bacillus sphaericus. A recombinant plasmid pSB01, containing an 8.2-kb DNA fragment from B. sphaericus, was isolated by phenotypic complementation of an Escherichia coli bioB strain. Nucleotide sequence analysis of this fragment and N-terminal sequence determination of the recombinant protein product revealed that the bioB gene of B. sphaericus consists of a 996-bp open reading frame which is closely associated with at least one other gene. E. coli cells transformed with a bioB expression vector performed efficient bioconversion of DTB to biotin under defined culture conditions. Biotin production from transformed Bacillus subtilis and B. sphaericus recombinant strains was also demonstrated. Comparison of the amino acid sequences of BS from E. coli and B. sphaericus revealed extensive similarity.  相似文献   

4.
External biotin greatly stimulates bacterial growth and alfalfa root colonization by Sinorhizobium meliloti strain 1021. Several genes involved in responses to plant-derived biotin have been identified in this bacterium, but no genes required for biotin transport are known, and not all loci required for biotin synthesis have been assigned. Searches of the S. meliloti genome database in combination with complementation tests of Escherichia coli biotin auxotrophs indicate that biotin synthesis probably is limited in S. meliloti 1021 by the poor functioning or complete absence of several key genes. Although several open reading frames with significant similarities to genes required for synthesis of biotin in gram-positive and gram-negative bacteria were found, only bioB, bioF, and bioH were demonstrably functional in complementation tests with known E. coli mutants. No sequence or complementation evidence was found for bioA, bioC, bioD, or bioZ. In contrast to other microorganisms, the S. meliloti bioB and bioF genes are not localized in a biotin synthesis operon, but bioB is cotranscribed with two genes coding for ABC transporter-like proteins, designated here bioM and bioN. Mutations in bioM and bioN eliminated growth on alfalfa roots and reduced bacterial capacity to maintain normal intracellular levels of biotin. Taken together, these data suggest that S. meliloti normally grows on exogenous biotin using bioM and bioN to conserve biotin assimilated from external sources.  相似文献   

5.
6.
We isolated a Tn5 insertion mutant of Rhodobacter capsulatus which requires biotin for growth. Crossfeeding studies with Escherichia coli bio mutants indicated that the insertion is in the bioB gene. A cosmid that complements the bioB insertion was isolated, and the bioB gene was localized to a 2.85-kilobase EcoRI-PstI fragment.  相似文献   

7.
8.
9.
10.
11.
12.
Genetic deletions that terminate within the cluster of genes needed for biotin biosynthesis in Escherichia coli have been isolated and mapped by transduction with phages lambda and P1. These deletions order the point mutations in each of the five genes. Mutations causing biotin dependence were incorporated into lambdapbio transducing phages. New bio(-) mutations were induced by exposure of lambdapbio particles to ultraviolet light. Tests of complementation between such bio(-)pbio particles and bio(-) mutant cells divide the bio(-) mutations into five cistrons: bioA, bioB, bioF, bioC, and bioD. Certain bioA and bioF mutations exhibit intragenic complementation, suggesting that these genes determine enzymes composed of identical subunits.  相似文献   

13.
14.
15.
16.
G Konopa  W Szybalski  J Kotval  A Campbell 《Gene》1982,19(1):104-108
The center of the pBopA promoter-operator region for the bioABFCD operon is located 1.71 kb clockwise from the att lambda site on the Escherichia coli genome, as determined by the position of the p131 (IS1) insertion. The order of several bio endpoints to the right of p131 is lambda bio267, 122, 169, 74, 1, and 69. The endpoints of the two bio deletions, delta 61 in bioA and delta 3h in bioB, were also determined.  相似文献   

17.
18.
19.
Streptavidin is a biotin-binding protein which has been widely used in many in vitro and in vivo applications. Because of the ease of protein recovery and availability of protease-deficient strains, the Bacillus subtilis expression-secretion system is an attractive system for streptavidin production. However, attempts to produce streptavidin using B. subtilis face the problem that cells overproducing large amounts of streptavidin suffer poor growth, presumably because of biotin deficiency. This problem cannot be solved by supplementing biotin to the culture medium, as this will saturate the biotin binding sites in streptavidin. We addressed this dilemma by engineering a B. subtilis strain (WB800BIO) which overproduces intracellular biotin. The strategy involves replacing the natural regulatory region of the B. subtilis chromosomal biotin biosynthetic operon (bioWAFDBIorf2) with an engineered one consisting of the B. subtilis groE promoter and gluconate operator. Biotin production in WB800BIO is induced by gluconate, and the level of biotin produced can be adjusted by varying the gluconate dosage. A level of gluconate was selected to allow enhanced intracellular production of biotin without getting it released into the culture medium. WB800BIO, when used as a host for streptavidin production, grows healthily in a biotin-limited medium and produces large amounts (35 to 50 mg/liter) of streptavidin, with over 80% of its biotin binding sites available for future applications.  相似文献   

20.
Menaquinone (vitamin K2)-deficient mutants of Bacillus subtilis were selected by simultaneous resistance to two aminoglycoside antibiotics. These men mutants fell into two groups: group I, in which the nutritional requirement was satisfied either by o-succinylbenzoic acid or by 1,4-dihydroxy-2-naphthoic acid; and group II, comprising those capable of growing only when supplemented with 1,4-dihydroxy-2-naphthoic acid. The latter group could be further subdivided into two classes on the basis of syntrophy experiments, fine-structure genetic mapping, and in vitro complementation by cell-free extracts (Meganathan et al., J. Bacteriol., 145:328-332, 1981). These subclasses of group II defined the menB and menE genes, whereas group I appeared to comprise mutations in the menC and menD genes. All of the men mutations tested, whether occurring in menB, menE, or menC,D, could be placed by genetic mapping with bacteriophage PBS1 between bioB and ald on the B. subtilis genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号