首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-terminal amino acid sequence (23 amino acid residues) and the amino acid composition of the extracellular bacteriolytic enzyme L1 of 21 kD from the bacterium Lysobacter sp. XL1 have been determined. The enzyme was hydrolyzed by trypsin, the resulting peptides were isolated, and their primary structures were determined. A high extent of homology (92%) of the N-terminal amino acid sequence and the primary structure of isolated peptides of the enzyme L1 (62 amino acid residues or 31% of protein sequence) to the corresponding sites of alpha-lytic proteinases (EC 3.4.21.12) of Lysobacter enzymogenes and Achromobacter lyticus was found. These data allowed identification of the endopeptidase L1 of Lysobacter sp. XL1 as alpha-lytic proteinase EC 3.4.21.12.  相似文献   

2.
The Gram-negative bacterium Lysobacter sp. XL1 secretes various proteins, including bacteriolytic enzymes (L1-L5), into the culture medium. These proteins are able to degrade Gram-positive bacteria. The mechanism of secretion of extracellular proteins by Lysobacter sp. XL1 has not been studied hitherto. Electron microscopic investigations revealed the phenomenon of the formation of extracellular vesicles by Lysobacter sp. XL1. These vesicles contained components of the Lysobacter sp. XL1 outer membrane, and demonstrated bacteriolytic activity against Gram-positive and Gram-negative bacteria: Staphylococcus aureus 209-P and Erwinia marcescens EC1, respectively. Western blotting analysis with antibodies to homologous bacteriolytic endopeptidases L1 and L5 showed that endopeptidase L5 was secreted into the culture medium by means of vesicles, unlike its homolog, endopeptidase L1. When inside the vesicles, endopeptidase L5 actively lysed the Gram-negative bacterium Erwinia marcescens; outside the vesicles, it lost this ability. The secretion of bacteriolytic endopeptidase L5 through the outer membrane vesicles is of great biological significance: because of this ability, Lysobacter sp. XL1 can compete in nature with both Gram-positive and Gram-negative bacteria.  相似文献   

3.
The substrate specificity of autolytic enzymes of the bacterium Lysobacter sp. XL 1 has been established. The periplasmic enzyme A8, the cytosolic enzyme A1, and the enzyme A10 solubilized from the cell walls and membranes with Triton X-100 exhibit glucosaminidase activity; the cytosolic enzyme A4 and the enzyme A9 solubilized from the cell walls and membranes with LiCl exhibit the muramidase activity. The cytosolic enzymes A3 and A6 have N-acetylmuramoyl-L-alanine amidase activity, and the enzyme A5 exhibits the diaminopimelinoyl-alanine endopeptidase activity. Some physicochemical properties of the most active autolytic cytosolic enzymes of Lysobacter sp. XL 1 (endopeptidases A5 and A7 and N-acetylmuramoyl-L-alanine amidase A6) were studied. The enzymes exhibit maximal activity over a wide range of buffer concentrations in weakly alkaline medium and moderate temperatures. The investigated enzymes are comparatively thermolabile proteins.  相似文献   

4.
An enzyme exhibiting yeast-lytic activity has been isolated from the culture liquid of the bacterium Lysobacter sp. XL 1. The optimal conditions for the hydrolysis of Saccharomyces cerevisiae cells by the enzyme have been established: 0.15 M sodium acetate buffer, pH 6.0, 50 degrees C. The yeast-lytic activity of the enzyme is inhibited by EDTA, p-chloromercuribenzoate, and phenylmethylsulfonyl fluoride. According to the data of SDS-PAGE, the molecular weight of the protein is 36 kD. The enzyme hydrolyzes casein, hemoglobin, and synthetic peptide Abz-Ala-Ala-Phe-pNA, i.e. it exhibits proteolytic activity. The properties of the enzyme and its molecular weight correspond to those of a previously isolated extracellular metalloproteinase. The N-terminal amino acid sequence of the protein exhibits 67% homology with the N-terminal sequence of achromolysine of Achromobacter lyticus (EC 3.4.24.-).  相似文献   

5.
6.
The thermostability of maltogenic amylase from Thermus sp. strain IM6501 (ThMA) was improved greatly by random mutagenesis using DNA shuffling. Four rounds of DNA shuffling and subsequent recombination of the mutations produced the highly thermostable mutant enzyme ThMA-DM, which had a total of seven individual mutations. The seven amino acid substitutions in ThMA-DM were identified as R26Q, S169N, I333V, M375T, A398V, Q411L, and P453L. The optimal reaction temperature of the recombinant enzyme was 75 degrees C, which was 15 degrees C higher than that of wild-type ThMA, and the melting temperature, as determined by differential scanning calorimetry, was increased by 10.9 degrees C. The half-life of ThMA-DM was 172 min at 80 degrees C, a temperature at which wild-type ThMA was completely inactivated in less than 1 min. Six mutations that were generated during the evolutionary process did not significantly affect the specific activity of the enzyme, while the M375T mutation decreased activity to 23% of the wild-type level. The molecular interactions of the seven mutant residues that contributed to the increased thermostability of the mutant enzyme with other adjacent residues were examined by comparing the modeled tertiary structure of ThMA-DM with those of wild-type ThMA and related enzymes. The A398V and Q411L substitutions appeared to stabilize the enzyme by enhancing the interdomain hydrophobic interactions. The R26Q and P453L substitutions led potentially to the formation of genuine hydrogen bonds. M375T, which was located near the active site of ThMA, probably caused a conformational or dynamic change that enhanced thermostability but reduced the specific activity of the enzyme.  相似文献   

7.
This paper presents the complete amino acid sequence of the low molecular weight acid phosphatase from bovine liver. This isoenzyme of the acid phosphatase family is located in the cytosol, is not inhibited by L-(+)-tartrate and fluoride ions, but is inhibited by sulfhydryl reagents. The enzyme consists of 157 amino acid residues, has an acetylated NH2 terminus, and has arginine as the COOH-terminal residue. All 8 half-cystine residues are in the free thiol form. The molecular weight calculated from the sequence is 17,953. The sequence was determined by characterizing the peptides purified by reverse-phase high performance liquid chromatography from tryptic, thermolytic, peptic, Staphylococcus aureus protease, and chymotryptic digests of the carboxymethylated protein. No sequence homologies were found with the two known acylphosphatase isoenzymes or the metalloproteins porcine uteroferrin and purple acid phosphatase from bovine spleen (both of which have acid phosphatase activity). Two half-cystines at or near the active site were identified through the reaction of the enzyme with [14C] iodoacetate in the presence or in the absence of a competitive inhibitor (i.e. inorganic phosphate). Ac-A E Q V T K S V L F V C L G N I C R S P I A E A V F R K L V T D Q N I S D N W V I D S G A V S D W N V G R S P N P R A V S C L R N H G I N T A H K A R Q V T K E D F V T F D Y I L C M D E S N L R D L N R K S N Q V K N C R A K I E L L G S Y D P Q K Q L I I E D P Y Y G N D A D F E T V Y Q Q C V R C C R A F L E K V R-OH.  相似文献   

8.
The complete amino acid sequence of coagulogen purified from the hemocytes of the horseshoe crab Carcinoscorpius rotundicauda was determined by characterization of the NH2-terminal sequence and the peptides generated after digestion of the protein with lysyl endopeptidase, Staphylococcal aureus protease V8 and trypsin. Upon sequencing the peptides by the automated Edman method, the following sequence was obtained: A D T N A P L C L C D E P G I L G R N Q L V T P E V K E K I E K A V E A V A E E S G V S G R G F S L F S H H P V F R E C G K Y E C R T V R P E H T R C Y N F P P F V H F T S E C P V S T R D C E P V F G Y T V A G E F R V I V Q A P R A G F R Q C V W Q H K C R Y G S N N C G F S G R C T Q Q R S V V R L V T Y N L E K D G F L C E S F R T C C G C P C R N Y Carcinoscorpius coagulogen consists of a single polypeptide chain with a total of 175 amino acid residues and a calculated molecular weight of 19,675. The secondary structure calculated by the method of Chou and Fasman reveals the presence of an alpha-helix region in the peptide C segment (residue Nos. 19 to 46), which is released during the proteolytic conversion of coagulogen to coagulin gel. The beta-sheet structure and the 16 half-cystines found in the molecule appear to yield a compact protein stable to acid and heat. The amino acid sequences of coagulogen of four species of limulus have been compared and the interspecies evolutionary differences are discussed.  相似文献   

9.
10.
Oh KH  Nam SH  Kim HS 《Protein engineering》2002,15(8):689-695
N-Carbamyl-D-amino acid amidohydrolase (N-carbamoylase), which is currently employed in the industrial production of unnatural D-amino acid in conjunction with D-hydantoinase, has low oxidative and thermostability. We attempted the simultaneous improvement of the oxidative and thermostability of N-carbamoylase from Agrobacterium tumefaciens NRRL B11291 by directed evolution using DNA shuffling. In a second generation of evolution, the best mutant 2S3 with improved oxidative and thermostability was selected, purified and characterized. The temperature at which 50% of the initial activity remains after incubation for 30 min was 73 degrees C for 2S3, whereas it was 61 degrees C for wild-type enzyme. Treatment of wild-type enzyme with 0.2 mM hydrogen peroxide for 30 min at 25 degrees C resulted in a complete loss of activity, but 2S3 retained about 79% of the initial activity under the same conditions. The K(m) value of 2S3 was estimated to be similar to that of wild-type enzyme; however k(cat) was decreased, leading to a slightly reduced value of k(cat)/K(m), compared with wild-type enzyme. DNA sequence analysis revealed that six amino acid residues were changed in 2S3 and substitutions included Q23L, V40A, H58Y, G75S, M184L and T262A. The stabilizing effects of each amino acid residue were investigated by incorporating mutations individually into wild-type enzyme. Q23L, H58Y, M184L and T262A were found to enhance both oxidative and thermostability of the enzyme and of them, T262A showed the most significant effect. V40A and G75S gave rise to an increase only in oxidative stability. The positions of the mutated amino acid residues were identified in the structure of N-carbamoylase from Agrobacterium sp. KNK 712 and structural analysis of the stabilizing effects of each amino acid substitution was also carried out.  相似文献   

11.

The Gram-negative bacterium Lysobacter sp. XL1 secretes into the extracellular space five bacteriolytic enzymes that lyse the cell walls of competing microorganisms. Of special interest are homologous lytic proteases L1 and L5. This work found protein L5 to possess Gly-Gly endopeptidase and N-acetylmuramoyl-l-Ala amidase activities with respect to staphylococcal peptidoglycan. Protein L5 was found to be capable of aggregating into amyloid-like fibril structures. The crystal structure of protein L5 was determined at a 1.60-Å resolution. Protein L5 was shown to have a rather high structural identity with bacteriolytic protease L1 of Lysobacter sp. XL1 and α-lytic protease of Lysobacter enzymogenes at a rather low identity of their amino acid sequences. Still, the structure of protein L5 was revealed to have regions that differed from their equivalents in the homologs. The revealed structural distinctions in L5 are suggested to be of importance in exhibiting its unique properties.

  相似文献   

12.
Ferredoxin from the thermoacidophilic archaeon Sulfolobus sp. strain 7 has a 36-residue extra domain at its N-terminus and a 67-residue core domain carrying two iron-sulfur clusters. A zinc ion is held at the interface of the two domains through tetrahedral coordination of three histidine residues (-6, -19 and -34) and one aspartic acid residue (-76) [Fujii, T., Hata, Y., Oozeki, M., Moriyama, H., Wakagi, T., Tanaka, N. & Oshima, T. (1997) Biochemistry 36, 1505-1513]. To elucidate the roles of the novel zinc ion and the extra N-terminal domain, a series of truncated mutants was constructed: G1, V12, S17, G23, L31 and V38, which lack residues 0, 11, 16, 22, 30 and 37 starting from the N-terminus, respectively. A mutant with two histidine residues each replaced by an alanine residue, H16A/H19A, was also constructed. All the mutant ferredoxins had two iron-sulfur clusters, while zinc was retained only in G1 and V12. The thermal stability of the proteins was investigated by monitoring A408; the melting temperature (Tm) was approximately 109 degrees C for the natural ferredoxin, approximately 109 degrees C for G1, 97.6 degrees C for V12, 89.0 degrees C for S17, 89.2 degrees C for G23, 89.3 degrees C for L31, 82.1 degrees C for V38, and 89.4 degrees C for H16A/H19A. Km and Vmax values of 2-oxoglutarate:ferredoxin oxidoreductase for natural ferredoxin, G1, S17 and L31 were similar, suggesting that electron-accepting activities were not affected by the deletion. The combination of CD and fluorescent spectroscopic analyses with truncated mutant S17 indicated that not only the clusters but also the secondary and tertiary structures were simultaneously degraded at a Tm around 89 degrees C. These results unequivocally demonstrate that the zinc ion and certain parts, but not all, of the extra sequence stretch in the N-terminal domain are responsible not for function but for thermal stabilization of the molecule.  相似文献   

13.
A cytoplasmic NADH oxidase (NOX) was purified from a soil bacteria, Brevibacterium sp. KU1309, which is able to grow in the medium containing 2-phenylethanol as the sole source of carbon under an aerobic condition. The enzyme catalyzed the oxidation of NADH to NAD+ involving two-electron reduction of O2 to H2O2. The molecular weight of the enzyme was estimated to be 102 kDa by gel filtration and 57 kDa by SDS-PAGE, which indicates that the NOX was a homodimer consisting of a single subunit. The enzyme was stable up to 70 degrees C at a broad range of pH from 7 to 11. The enzyme activity increased about ten-fold with the addition of ammonium salt, while it was inhibited by Zn2+ (39%), Cu2+ (41%), Hg2+ (72%) and Ag+ (37%). The enzyme acts on NADH, but not on NADPH. The regeneration of NAD+ utilizing this enzyme made selective oxidation of mandelic acid or L: -phenylalanine possible. This thermostable enzyme is expected to be applicable as a useful biocatalyst for NAD+ recycling.  相似文献   

14.
We performed directed evolution on a chemically synthesized 1,533-bp recombinant beta-galactosidase gene from Pyrococcus woesei. More than 200,000 variant colonies in each round of directed evolution were screened using the pYPX251 vector and host strain Rosetta-Blue (DE3). One shifted beta-galactosidase to beta-glucuronidase mutant, named YG6762, was obtained after four rounds of directed evolution and screening. This mutant had eight mutated amino acid residues. T29A, V213I, L217M, N277H, I387V, R491C, and N496D were key mutations for high beta-glucuronidase activity, while E414D was not essential because the mutation did not lead to a change in beta-glucuronidase activity. The amino acid site 277 was the most essential because mutating H back to N resulted in a 50% decrease in beta-glucuronidase activity at 37°C. We also demonstrated that amino acid 277 was the most essential site, as the mutation from N to H resulted in a 1.5-fold increase in beta-glucuronidase activity at 37°C. Although most single amino acid changes lead to less than a 20% increase in beta-glucuronidase activity, the YG6762 variant, which was mutated at all eight amino acid sites, had a beta-glucuronidase activity that was about five and seven times greater than the wild-type enzyme at 37 and 25°C, respectively. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
As part of a program to discover improved glycoside hydrolase family 12 (GH 12) endoglucanases, we have studied the biochemical diversity of several GH 12 homologs. The H. schweinitzii Cel12A enzyme differs from the T. reesei Cel12A enzyme by only 14 amino acids (93% sequence identity), but is much less thermally stable. The bacterial Cel12A enzyme from S. sp. 11AG8 shares only 28% sequence identity to the T. reesei enzyme, and is much more thermally stable. Each of the 14 sequence differences from H. schweinitzii Cel12A were introduced in T. reesei Cel12A to determine the effect of these amino acid substitutions on enzyme stability. Several of the T. reesei Cel12A variants were found to have increased stability, and the differences in apparent midpoint of thermal denaturation (T(m)) ranged from a 2.5 degrees C increase to a 4.0 degrees C decrease. The least stable recruitment from H. schweinitzii Cel12A was A35S. Consequently, the A35V substitution was recruited from the more stable S. sp. 11AG8 Cel12A and this T. reesei Cel12A variant was found to have a T(m) 7.7 degrees C higher than wild type. Thus, the buried residue at position 35 was shown to be of critical importance for thermal stability in this structural family. There was a ninefold range in the specific activities of the Cel12 homologs on o-NPC. The most and least stable T. reesei Cel12A variants, A35V and A35S, respectively, were fully active. Because of their thermal tolerance, S. sp. 11AG8 Cel12A and T. reesei Cel12A variant A35V showed a continual increase in activity over the temperature range of 25 degrees C to 60 degrees C, whereas the less stable enzymes T. reesei Cel12A wild type and the destabilized A35S variant, and H. schweinitzii Cel12A showed a decrease in activity at the highest temperatures. The crystal structures of the H. schweinitzii, S. sp. 11AG8, and T. reesei A35V Cel12A enzymes have been determined and compared with the wild-type T. reesei Cel12A enzyme. All of the structures have similar Calpha traces, but provide detailed insight into the nature of the stability differences. These results are an example of the power of homolog recruitment as a method for identifying residues important for stability.  相似文献   

16.
Heinis C  Alessi P  Neri D 《Biochemistry》2004,43(20):6293-6303
We present a new antibody-directed enzyme prodrug therapy strategy (ADEPT) based on a post-proline cleaving endopeptidase and prodrugs, in which cytotoxic moieties are linked to a proline-containing peptide. Human prolyl endopeptidase was expressed in Escherichia coli and purified to homogeneity. The enzyme was active in buffer and in human serum but was rapidly thermally inactivated by incubation at 37 degrees C, thus preventing applications in vivo. While prolyl endopeptidase display on filamentous phage abolished viral infectivity and prevented directed evolution strategies based on phage display, we robotically screened 10752 individual colonies of mutant enzymes using a fluorogenic assay to improve enzyme stability. A single amino acid mutation (Glu289 --> Gly) improved protein stability, resulting in a half-life of 16 h at 37 degrees C in phosphate buffer. Two prodrugs were synthesized, in which an N-protected glycine-proline dipeptide was covalently coupled to doxorubicin and melphalan. (Benzyloxycarbonyl)glycylprolylmelphalan, but not the more sterically hindered doxorubicin prodrug, could be efficiently activated by prolyl endopeptidase [specific activity = 813.3 nmol min(-1) (mg of enzyme)(-1) at 25 degrees C]. The melphalan prodrug was essentially nontoxic to CHO, F9 teratocarcinoma, MCF7 breast adenocarcinoma, and p3U1 mouse myeloma cells up to millimolar concentrations, while prodrug incubation with the engineered prolyl endopeptidase mutant led to a cell killing profile superimposable to the one of melphalan. The prolyl endopeptidase mutant was then chemically coupled to the human antibody L19, specific to the EDB domain of fibronectin, a marker of angiogenesis. The resulting immunoconjugate retains antigen binding and enzymatic activity, thus opening the way to anticancer ADEPT applications.  相似文献   

17.
' Lysobacter enzymogenes ssp. cookii ' was proposed by Christensen and Cook in 1978; however, this subspecies name has not been cited in the Approved Lists of Bacterial Names and therefore the nomenclature has not been validated. In our genetic approach to clarify the relationships of the designated type strain of ' L. enzymogenes ssp. cookii ' PAGU 1119 (GenBank accession number ATCC29488 ) within the genus Lysobacter revealed that the strain was closely related to Lysobacter capsici YC5194 T (99.4%) rather than L. enzymogenes DSM2043 T (97.2%). The value for whole genome DNA–DNA relatedness between strain PAGU 1119 and L. enzymogenes DSM 2043T or L. capsici YC5194 T was 20.7–26.1% or 60.9–62.0%, respectively. Although PAGU 1119 and L. capsici YC5194 T showed relatively high DNA relationships, the fatty acid profiles and some phenotypic characteristics were different, and we concluded that PAGU 1119 should be placed in a new species. We therefore propose a new species with the name Lysobacter cookii sp. nov. The type strain is PAGU 1119T ( ATCC29488 ).  相似文献   

18.
The gamma-D-glutamyl-(L)meso-diaminopimelate endopeptidase, or endopeptidase I, from Bacillus sphaericus 9602 was purified to apparent protein homogeneity. The purification was achieved by a six-step procedure: ammonium sulfate fractionation, phenyl-Sepharose chromatography, two consecutive DEAE-Trisacryl chromatographies, chromatofocusing and Sephacryl S-200 permeation chromatography. The enzyme was purified 5000-fold with a 38% recovery of lytic activity. It is an acidic protein (pI 5.4) of hydrophobic nature. Kinetic studies have shown a Km value of 0.57 mM and an apparent Vmax of 8.3 mumol min-1 (mg enzyme)-1 with N-acetylmuramyl-L-alanyl-gamma-D-glutamyl-(L)meso-diaminopimelyl (L)-D-[14C]alanine as substrate. The enzyme was inhibited by o-phenanthroline and EDTA and was reactivated by zinc, cobalt and manganese ions; thus endopeptidase I is a metallo enzyme, probably a zinc enzyme. Moreover it is a heat-stable protein with an apparent inactivation temperature of 80 degrees C.  相似文献   

19.
4-Chlorobenzoate:CoA ligase, the first enzyme in the pathway for 4-chlorobenzoate dissimilation, has been partially purified from Arthrobacter sp. strain TM-1, by sequential ammonium sulphate precipitation and chromatography on DEAE-Sepharose and Sephacryl S-200. The enzyme, a homodimer of subunit molecular mass approximately 56 kD, is dependent on Mg2+-ATP and coenzyme A, and produces 4-chlorobenzoyl CoA and AMP. Besides Mg2+, Mn2+, Co2+, Fe2+ and Zn2+ are also stimulatory, but not Ca2+. Maximal activity is exhibited at pH 7.0 and 25 degrees C. The ligase demonstrates broad specificity towards other halobenzoates, with 4-chlorobenzoate as best substrate. The apparent Michaelis constants (Km) of the enzyme for 4-chlorobenzoate, CoA and ATP were determined as 3.5, 30 and 238 microM respectively. 4-Chlorobenzoyl CoA dehalogenase, the second enzyme, has been purified to homogeneity by sequential column chromatography on hydroxyapatite, DEAE-Sepharose and Sephacryl S-200. It is a homotetramer of 33 kD subunits with an isoelectric point of 6.4. At pH 7.5 and 30 degrees C, Km and kcat for 4-CBCoA are 9 microM and 1 s(-1) respectively. The optimum pH is 7.5, and maximal enzymic activity occurs at 45 degrees C. The properties of this enzyme are compared with those of the 4-chlorobenzoyl CoA dehalogenases from Arthrobacter sp. strain 4-CB1 and Pseudomonas sp. strain CBS-3, which differ variously in their N-terminal amino acid sequences, optimal pH values, pI values and/or temperatures of maximal activity.  相似文献   

20.
We have taken advantage of the intrinsic fluorescence properties of chitosanases to rapidly and quantitatively evaluate the protective effect of chitosan against thermal denaturation of chitosanases. The studies were done using wild type chitosanases N174 produced by Streptomyces sp. N174 and SCO produced by Streptomyces coelicolor A3(2). In addition, two mutants of N174 genetically engineered by single amino acid substitutions (A104L and K164R) and one "consensus" (N174-CONS) chitosanase designed by multiple amino acid substitutions of N174 were analyzed. Chitosan used had a weight average molecular weight (Mw) of 220 kDa and was 85% deacetylated. Results showed a pH and concentration-dependent protective effect of chitosan in all the cases. However, the extent of thermal protection varied depending on chitosanases, suggesting that key amino acid residues contributed to resistance to heat denaturation. The transition temperatures (T(m)) of N174 were 54 degrees C and 69.5 degrees C in the absence and presence (6 g/l) of chitosan, respectively. T(m) were increased by 11.6 degrees C (N174-CONS), 13.8 degrees C (CSN-A104L), 15.6 degrees C (N174-K164R) and 25.2 degrees C (SCO) in the presence of chitosan (6 g/l). The thermal protective effect was attributed to an enzyme-ligand thermostabilization mechanism since it was not mimicked by the presence of anionic (carboxymethyl cellulose, heparin) or cationic (polyethylene imine) polymers, polyhydroxylated (glycerol, sorbitol) compounds or inorganic salts. Furthermore, the data from fluorometry experiments were in agreement with those obtained by analysis of reaction time-courses performed at 61 degrees C in which case CSN-A104L was rapidly inactivated whereas N174, N174-CONS and N174-K164R remained active over a reaction time of 90 min. This study presents evidence that (1) the fluorometric determination of T(m) in the presence of chitosan is a reliable technique for a rapid assessment of the thermal behavior of chitosanases, (2) it is applicable to structure-function studies of mutant chitosanases and, (3) it can be useful to provide an insight into the mechanism by which mutations can influence chitosanase stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号