首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Depletion of glutathione after gamma irradiation modifies survival   总被引:2,自引:0,他引:2  
The relationship between the intracellular glutathione (GSH) concentration and the aerobic radiation response was studied in Chinese hamster ovary cells. Various degrees of GSH depletion were produced by exposure to buthionine sulfoximine (BSO) and/or diethyl maleate (DEM). Diethyl maleate did not act as a classical radiosensitizer under the experimental conditions employed, nor did exposure to DEM/BSO nonspecifically affect protein thiols as measured by thiol blotting. Dose-response curves were obtained using cells irradiated in the absence or presence of DEM/BSO, which decreased GSH levels by 90-95%. Exposure to DEM/BSO did not affect the formation of DNA single-strand breaks or DNA-protein crosslinks measured immediately after irradiation performed at ice temperatures. Analysis of survival curves indicated that the Dq was decreased by 18% when GSH depletion occurred prior to, during, and after irradiation. The DEM/BSO exposure did not affect D0. To study postirradiation conditions, cells were exposed to 10 microM DEM prior to and during irradiation, which was performed at ice temperatures. Levels of GSH were depleted by 75% by this protocol. Immediately after irradiation, the cells were rapidly warmed by the addition of 37 degrees C growth medium containing either 10 or 90 microM DEM. Addition of 10 microM DEM after irradiation did not affect the degree of depletion, which remained constant at 75%. In contrast, GSH depletion was increased to 90% 10 min after addition of the 90 microM DEM. Addition of 90 microM DEM after irradiation produced a statistically significant difference in survival compared to addition of 10 microM DEM. In a second depletion protocol, cells were exposed to 100 microM DEM at room temperature for 5 min, irradiated, incubated at 37 degrees C for 1 h, washed, and then incubated in 50 microM BSO for 24 h. This depletion protocol reduced survival by a factor of 2.6 compared to cells not exposed to the combination of DEM/BSO. Survival was not affected if the cells were exposed to the DEM or BSO alone. This was interpreted to indicate that survival was not affected by GSH depletion occurring after irradiation unless depletion was rapid and sustained. The rate of repair of sublethal and potentially lethal damage was measured and found to be independent of the DEM/BSO exposure. These experimental results in addition to previous ones (Freeman and Meredith, Int. J. Radiat. Oncol. Biol. Phys. 13, 1371-1375, 1987) were interpreted to indicate that under aerobic conditions GSH depletion may alter the expression of radiation damage by affecting metabolic fixation.  相似文献   

2.
Intracellular glutathione (GSH) concentrations were titrated in Chinese hamster ovary cells by exposure to various concentrations of diethylmaleate (DEM). The various steady state levels of GSH obtained were maintained throughout the experimental time course. Cells were incubated at 42° after DEM addition in order to produce thermal dose response curves using colony formation as the end point. The slope of the dose response curve was subsequently determined and compared to the intracellular GSH concentration. This comparison indicated Chinese hamster ovary cells contain multiple reservoirs of GSH which in turn regulate thermal toxicity in a stepwise manner. Removal of 50% or less of the GSH did not affect thermal sensitivity. A small increase in sensitivity occured when 50 to 80% of the GSH was removed. Removal of greater than 80% of the GSH increased thermal toxicity significantly. The facts that 10 and 20 µM DEM produce extensive GSH depletion and only small changes in survival imply that a threshold concentration of GSH must be removed before thermal toxicity is affected.Abbreviations BCNU 1-3-Bis(2-Chloroethyl)-1-nitrosourea - BSO buthionine sulfoximine - CHO Chinese hamster ovary - DEM diethylmaleate - DMSO dimethyl sulfoxide - HBSS Hanks balanced salt solution - RF radiofrequency  相似文献   

3.
The mitochondrial permeability transition (MPT) is a calcium and oxidative stress sensitive transition in the permeability of the mitochondrial inner membrane that plays a crucial role in cell death. However, the mechanism regulating the MPT remains controversial. To study the role of oxidative stress in the regulation of the MPT, we used diethyl maleate (DEM) to deplete glutathione (GSH) in human leukemic CEM cells. GSH depletion increased mitochondrial calcium and reactive oxygen species (ROS) levels in a co-dependent manner causing loss of mitochondrial membrane potential (deltapsi(m)) and cell death. These events were inhibited by the calcium chelator BAPTA-AM and the antioxidants N-acetylcysteine (NAC) and the triphenyl phosphonium-linked ubiquinone derivative MitoQ. In contrast, the MPT inhibitor cyclosporine A (CsA) and small interference RNA (siRNA) knockdown of cyclophilin D (Cyp-D) were not protective. These results indicate that mitochondrial permeabilization induced by GSH depletion is not regulated by the classical MPT.  相似文献   

4.
We tested the hypothesis that depletion of intracellular glutathione (GSH) during heat shock results in protein thiol oxidation, thereby increasing thermal sensitivity. Depletion of GSH was accomplished using a combination of diethylmaleate and buthionine sulfoximine and protein sulfhydryls were measured using two independent methods. Chinese hamster ovary (CHO) cells were solubilized in polyacrylamide gel electrophoresis (PAGE) sample buffer containing 3-(N-maleimido-propionyl) biocytin, separated by sodium dodecyl sulfate (SDS)-PAGE, electroluted onto nitrocellulose, and visualized via avidin-alkaline phosphatase staining. A second method utilized 5,5'-dithiobis(2-nitrobenzoic acid) to measure protein solubilized in SDS. The results indicate that when CHO cells are heated at 43 degrees C GSH depletion can increase thermal sensitivity but does not cause nonspecific protein thiol oxidation at this temperature or at 37 degrees C.  相似文献   

5.
Cultured hepatocytes were exposed to two chemicals, dinitrofluorobenzene (DNFB) and diethyl maleate (DEM), that abruptly deplete cellular stores of glutathione. Upon the loss of GSH, lipid peroxidation was evidenced by an accumulation of malondialdehyde in the cultures followed by the death of the hepatocytes. Pretreatment of the hepatocytes with a ferric iron chelator, deferoxamine, or the addition of an antioxidant, N,N'-diphenyl-p-phenylenediamine (DPPD), to the culture medium prevented both the lipid peroxidation and the cell death produced by either DNFB or DEM. However, neither deferoxamine nor DPPD prevented the depletion of GSH caused by either agent. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or inhibition of catalase by aminotriazole sensitized the hepatocytes to the cytotoxicity of DNFB. In a similar manner, pretreatment with BCNU potentiated the cell killing by DEM. DPPD and deferoxamine protected hepatocytes pretreated with BCNU and then exposed to DNFB or DEM. These data indicate that an abrupt depletion of GSH leads to lipid peroxidation and cell death in cultured hepatocytes. It is proposed that GSH depletion sensitizes the hepatocyte to its constitutive flux of partially reduced oxygen species. Such an oxidative stress is normally detoxified by GSH-dependent mechanisms. However, with GSH depletion these activated oxygen species are toxic as a result of the iron-dependent formation of a potent oxidizing species.  相似文献   

6.
Depletion of cellular GSH by diethyl maleate (DEM) potentiates CH2O toxicity in isolated rat hepatocytes and it was postulated that this increase in toxicity is due to the further decrease in GSH caused by CH2O in DEM-pretreated hepatocytes (1). The present investigation was conducted to investigate further the effects of CH2O, DEM, and acrolein (a compound which is structurally related to CH2O and DEM) on subcellular GSH pools and on protein sulfhydryl groups (PSH). CH2O caused a decrease in cytosolic GSH but had no effect on mitochondrial GSH either in previously untreated hepatocytes or in DEM-pretreated hepatocytes in which GSH was approximately 25% of control. DEM decreased both cytosolic and mitochondrial GSH but it did not produce toxicity. Neither CH2O (up to 7.5 mM) nor DEM (20 mM) decreased PSH. However, in cells pretreated with 1 mM DEM, CH2O (7.5 mM) decreased PSH and this effect preceded cell death. Acrolein decreased both cytosolic and mitochondrial GSH and it also decreased PSH significantly prior to causing cell death. CH2O and acrolein stimulated phosphorylase alpha activity, indicative of an increase in cytosolic free Ca2+, by a PSH-independent and PSH-dependent mechanism, respectively. These results suggest that the further depletion of cellular GSH by CH2O in DEM-pretreated cells is not due to the depletion of mitochondrial GSH. CH2O toxicity in DEM-pretreated cells is, however, correlated with depletion of PSH. The critical sulfhydryl protein(s) responsible for cell death remain to be more clearly defined.  相似文献   

7.
Heating of Ehrlich ascites tumour (EAT) cells and mouse fibroblast LM cells to 43 or 44 degrees C respectively, results in an increased level of reduced glutathione (GSH). The maximum elevation in GSH was to 140 per cent for LM cells and to 120 per cent for EAT cells. No increase of GSH in EAT cells was observed after heating at 44 degrees C. LM cells were treated with diethylmaleate (DEM) and the EAT cells with buthionine-sulphoximine (BSO) at non-toxic doses to deplete the levels of GSH. No effect on thermosensitivity or on the development of thermotolerance was observed when the DEM and BSO treatments were chosen such that the lowering of GSH was just down to the level of detection (about 5 per cent of control). When higher concentrations of DEM were used, thermal sensitization was observed. The activity of the pentose phosphate pathway (PPP) was also investigated because of its importance in supplying NADPH for the regeneration of GSH from GSSG and for the endogenous production of polyols. Hyperthermia was found to enhance markedly the flux of glucose through the PPP. While the DEM treatment inhibited glucose oxidation through the PPP, BSO addition to the cells resulted in a slightly increased activity of the PPP. The PPP activity of thermotolerant cells was lower (fibroblasts) or hardly affected (EAT cells) compared to control cells. The extent of PPP activation by hyperthermia was comparable for thermotolerant and control cells. For the two cell lines studied neither a high level of GSH nor an active PPP is a prerequisite for the development of thermotolerance.  相似文献   

8.
Hypothermia induces injury in its own right, but the mechanisms involved in the cell damage are still unclear. The aim of this study was to test the effects that glutathione (GSH) depletion induces on cell death in isolated rat hepatocytes, kept at 4 degrees C for 20 h, by modulating intracellular GSH concentration with diethylmaleate and buthionine sulfoximine (DEM and BSO). Untreated hepatocytes showed Annexin V stained cells (AnxV(+)), scarce propidium iodide stained cells (PI(+)) and presented a low level of lactate dehydrogenase (LDH) leakage after 20 h at 4 degrees C and rewarming at 37 degrees C. When DEM and BSO were added before cold storage, we observed a few AnXV(+) cells and an increase in PI(+) cells associated with LDH release in the incubation medium. Conversely, the addition of DEM and BSO only during rewarming caused a marked increase in cell death by apoptosis. Production of reactive oxygen species (ROS) and thiobarbituric acid species (TBARS), associated with a decrease in GSH concentrations, was higher when DEM and BSO were added before cold storage. Cells treated with DEM and BSO before cold storage showed lower ATP energy stores than hepatocytes treated with DEM and BSO only during rewarming. Pretreatment of hepatocytes with deferoxamine protected against apoptotic and necrotic morphology in conditions of GSH depletion. These results suggest that pretreatment of hepatocytes with DEM and BSO before cold storage induces necrosis, while the treatment of hepatocytes only during rewarming increases apoptosis. In both conditions, iron represents a crucial mediator of cell death.  相似文献   

9.
Present study investigated whether endosulfan, an organochlorine pesticide is able to deplete glutathione (GSH) and induce apoptosis in human peripheral blood mononuclear cells (PBMC) in vitro. The role of oxidative stress in the induction of apoptosis was also evaluated by the measurement of the GSH level in cell lysate. The protective role of N-acetylcysteine (NAC) on endosulfan-induced apoptosis was also studied. Isolated human PBMC were exposed to increasing concentrations (0-100 microM) of endosulfan (alpha/beta at 70:30 mixture) alone and in combination with NAC (20 microM) up to 24 h. Apoptotic cell death was determined by Annexin-V Cy3.18 binding and DNA fragmentation assays. Cellular GSH level was measured using dithionitrobenzene. Endosulfan at low concentrations, i.e., 5 and 10 microM, did not cause significant death during 6 h/12 h incubation, whereas a concentration-dependent cell death was observed at 24 h. DNA fragmentation analysis revealed no appreciable difference between control cells and 5 microM/10 microM endosulfan treated cells, where only high molecular weight DNA band was observed. Significant ladder formation was observed at higher concentration, which is indicative of apoptotic cell death. Intracellular GSH levels decreased significantly in endosulfan-treated cells in a dose-dependent manner, showing a close correlation between oxidative stress and degree of apoptosis of PBMC. Cotreatment with NAC attenuated GSH depletion as well as apoptosis. Our results provide experimental evidence of involvement of oxidative stress in endosulfan-mediated apoptosis in human PBMC in vitro.  相似文献   

10.
Since endogenous glutathione (GSH), the main non-protein intracellular thiol compound, is known to provide protection against reactive radical species, its depletion by diethylmaleate (DEM) was used to assess the role of free radical formation mediated by doxorubicin in DNA damage, cytotoxicity and mutagenicity of the anthracycline. Subtoxic concentrations of DEM that produced up to 75% depletion of GSH did not increase doxorubicin cytotoxicity in a variety of cell lines, including Chinese hamster ovary (CHO) and lung (V-79) cells, LoVo human carcinoma cells and P388 murine leukemia cells. Similarly, the number of doxorubicin-induced DNA single strand breaks in CHO cells and the mutation frequency in V-79 cells were not affected by GSH depletion. The results obtained suggest that mechanisms other than free radical formation are responsible for DNA damage, cytotoxicity and mutagenicity of anthracyclines.  相似文献   

11.
Effects of glutathione depletion on gluconeogenesis in isolated hepatocytes   总被引:1,自引:0,他引:1  
Glutathione-depleted hepatocytes, by incubation with diethylmaleate (DEM) or phorone (2,6-dimethyl-2,5-heptadiene-4-one), i.e., substrates of the GSH S-transferases (EC 2.5.1.18), showed rates of gluconeogenesis from various precursors significantly lower than controls; however the rate of glucose synthesis from fructose was similar to that of controls. Isolated hepatocytes from rats pretreated with those substrates 1 h before isolation to deplete hepatic glutathione (GSH) also showed a decrease of the rate of gluconeogenesis from lactate plus pyruvate. Incubation of hepatocytes with L-buthionine sulfoximine, a specific inhibitor of gamma-glutamyl-cysteine synthetase (EC 6.3.2.2), resulted in a decreased rate of gluconeogenesis from lactate plus pyruvate only when GSH values were lower than 1 mumol/g cells. Freeze-clamped livers from GSH-depleted rats showed a higher concentration of malate and glycerol 3-phosphate, indicating that GSH depletion probably affects phosphoenolpyruvate carboxykinase and glycerol-3-phosphate dehydrogenase activities. Several indicators of cell viability, such as lactate dehydrogenase leakage, malondialdehyde accumulation, ATP concentration, or urea synthesis from different precursors, were not affected by GSH depletion under the experimental conditions used here. Besides, the GSH/GSSG ratio remained unchanged in all cases.  相似文献   

12.
Buthionine sulfoximine (BSO) has been used to deplete glutathione (GSH) in V79-379A cells in vitro, and the effect on the efficiency of oxygen and misonidazole (MISO) as radiosensitizers has been determined. Treatment with 50 or 500 microM BSO caused a rapid decline in GSH content to less than 5% of control values after 10 hr of exposure (t1/2 = 1.6 hr). Removal of BSO resulted in a rapid regeneration of GSH after 50 microM BSO, but little regeneration was observed over the subsequent 10-hr period after 500 microM. Treatment with either of these two concentrations of BSO for up to 14 hr did not affect cell growth or viability. Cells irradiated in monolayer on glass had an oxygen enhancement ratio (OER) of 3.1. After 10-14 hr pretreatment with 50 microM BSO, washed cells were radiosensitized by GSH depletion at all oxygen tensions tested. The OER was reduced to 2.6, due to greater radiosensitization of hypoxic cells than aerated ones by GSH depletion. GSH depletion had the effect of shifting the enhancement ratio vs pO2 curve to lower oxygen tensions, making oxygen appear more efficient by a factor of approximately 2, based on the pO2 required to give an OER of 2.0. In similar experiments performed with MISO, an enhancement ratio of 2.0 could be achieved with 0.2 mM MISO in anoxic BSO-pretreated cells, compared to 2.7 mM MISO in non-BSO-treated cells. Thus MISO appeared to be more efficient in GSH-depleted cells by a factor of 13.5. These apparent increases in radiosensitizer efficiency in GSH-depleted cells could be explained on the basis of radiosensitization of hypoxic cells by GSH depletion alone (ER = 1.29-1.41). The effect of GSH depletion was approximately equal at all sensitizer concentrations tested, except at high oxygen tensions, where the effect was insignificantly small. These results are consistent with hypoxic cell radiosensitization by GSH depletion and by MISO or oxygen acting by separate mechanisms.  相似文献   

13.
Potentiation of thermal injury in mouse cells by interferon   总被引:1,自引:0,他引:1  
Mouse cells, when exposed to high temperature (43 degrees), shut off overall protein synthesis and continue to synthesize "heat shock proteins". Such heat shocked cells, upon reincubation at 37 degrees C, recover and proliferate. However, when mouse cells are pretreated with mouse interferon (IFN) and then exposed to 43 degrees, more than 99% of the cell population fail to recover. Synthesis of the major heat shock protein is unaffected in cells treated with IFN. Experiments designed to assess the role of intracellular glutathione (GSH) during cells' recovery from hyperthermia indicated that there is an irreversible depletion of glutathione when IFN treated cells are heat shocked. Neither depletion of GSH, nor potentiation of thermal injury was observed in a IFN-resistant line of mouse cells.  相似文献   

14.
Adaptive increases in intracellular glutathione (GSH) in response to oxidative stress are mediated by induction of L-cystine uptake via the anionic amino acid transport system x(c)(-). The recently cloned transporter xCT forms a heteromultimeric complex with the heavy chain of 4F2 cell surface antigen (4F2hc/CD98). Depletion of GSH by the electrophile diethylmaleate (DEM) induces the activity and expression of xCT in peritoneal macrophages. We here examine the effects of vitamin C on induction of xCT by DEM in human umbilical artery smooth muscle cells. DEM caused time- (3-24 h) and concentration- (25-100 microM) dependent increases in L-cystine transport, with GSH depleted by 50% after 6 h and restored to basal values after 24 h. xCT mRNA levels increased after 4 h DEM treatment with negligible changes detected for 4F2hc mRNA. DEM caused a rapid (5-30 min) phosphorylation of p38(MAPK). Inhibition of p38(MAPK) by SB203580 (10 microM) enhanced DEM-induced increases in L-cystine transport and GSH, whereas inhibition of p42/p44(MAPK) (PD98059, 10 microM) had no effect. Pretreatment of cells with vitamin C (100 microM, 24 h) attenuated DEM-induced adaptive increases in L-cystine transport and GSH levels. Inhibition of p38(MAPK), but not p42/p44(MAPK), reduced the cytoprotective action of vitamin C. Our findings suggest that DEM induces activation of xCT via intracellular signaling pathways involving p38(MAPK), and that vitamin C, in addition to its antioxidant properties, may modulate this signaling pathway to protect smooth muscle cells from injury.  相似文献   

15.
In patients with chronic obstructive pulmonary disease (COPD), an imbalance between oxidants and antioxidants is acknowledged to result in disease development and progression. Cigarette smoke (CS) is known to deplete total glutathione (GSH + GSSG) in the airways. We hypothesized that components in the gaseous phase of CS may irreversibly react with GSH to form GSH derivatives that cannot be reduced (GSX), thereby causing this depletion. To understand this phenomenon, we investigated the effect of CS on GSH metabolism and identified the actual GSX compounds. CS and H(2)O(2) (control) deplete reduced GSH in solution [Delta = -54.1 +/- 1.7 microM (P < 0.01) and -39.8 +/- 0.9 microM (P < 0.01), respectively]. However, a significant decrease of GSH + GSSG was observed after CS (Delta = -75.1 +/- 7.6 microM, P < 0.01), but not after H(2)O(2). Exposure of A549 cells and primary bronchial epithelial cells to CS decreased free sulfhydryl (-SH) groups (Delta = -64.2 +/- 14.6 microM/mg protein, P < 0.05) and irreversibly modified GSH + GSSG (Delta = -17.7 +/- 1.9 microM, P < 0.01) compared with nonexposed cells or H(2)O(2) control. Mass spectrometry (MS) showed that GSH was modified to glutathione-aldehyde derivatives. Further MS identification showed that GSH was bound to acrolein and crotonaldehyde and another, yet to be identified, structure. Our data show that CS does not oxidize GSH to GSSG but, rather, reacts to nonreducible glutathione-aldehyde derivatives, thereby depleting the total available GSH pool.  相似文献   

16.
Despite making up only a minor fraction of the total cellular glutathione, recent studies indicate that the mitochondrial glutathione pool is essential for cell survival. Selective depletion of mitochondrial glutathione is sufficient to sensitize cells to mitochondrial oxidative stress (MOS) and intrinsic apoptosis. Glutathione is synthesized exclusively in the cytoplasm and must be actively transported into mitochondria. Therefore, regulation of mitochondrial glutathione transport is a key factor in maintaining the antioxidant status of mitochondria. Bcl-2 resides in the outer mitochondrial membrane where it acts as a central regulator of the intrinsic apoptotic cascade. In addition, Bcl-2 displays an antioxidant-like function that has been linked experimentally to the regulation of cellular glutathione content. We have previously demonstrated a novel interaction between recombinant Bcl-2 and reduced glutathione (GSH), which was antagonized by either Bcl-2 homology-3 domain (BH3) mimetics or a BH3-only protein, recombinant Bim. These previous findings prompted us to investigate if this novel Bcl-2/GSH interaction might play a role in regulating mitochondrial glutathione transport. Incubation of primary cultures of cerebellar granule neurons (CGNs) with the BH3 mimetic HA14-1 induced MOS and caused specific depletion of the mitochondrial glutathione pool. Bcl-2 was coimmunoprecipitated with GSH after chemical cross-linking in CGNs and this Bcl-2/GSH interaction was antagonized by preincubation with HA14-1. Moreover, both HA14-1 and recombinant Bim inhibited GSH transport into isolated rat brain mitochondria. To further investigate a possible link between Bcl-2 function and mitochondrial glutathione transport, we next examined if Bcl-2 associated with the 2-oxoglutarate carrier (OGC), an inner mitochondrial membrane protein known to transport glutathione in liver and kidney. After cotransfection of CHO cells, Bcl-2 was coimmunoprecipitated with OGC and this novel interaction was significantly enhanced by glutathione monoethyl ester. Similarly, recombinant Bcl-2 interacted with recombinant OGC in the presence of GSH. Bcl-2 and OGC cotransfection in CHO cells significantly increased the mitochondrial glutathione pool. Finally, the ability of Bcl-2 to protect CHO cells from apoptosis induced by hydrogen peroxide was significantly attenuated by the OGC inhibitor phenylsuccinate. These data suggest that GSH binding by Bcl-2 enhances its affinity for the OGC. Bcl-2 and OGC appear to act in a coordinated manner to increase the mitochondrial glutathione pool and enhance resistance of cells to oxidative stress. We conclude that regulation of mitochondrial glutathione transport is a principal mechanism by which Bcl-2 suppresses MOS.  相似文献   

17.
Treatment of mammalian cells with buthionine sulphoximine (BSO) or diethyl maleate (DEM) results in a decrease in the intracellular GSH (glutathione) and non-protein-bound SH (NPSH) levels. The effect of depletion of GSH and NPSH on radiosensitivity was studied in relation to the concentration of oxygen during irradiation. Single- and double-strand breaks (ssb and dsb) and cell killing were used as criteria for radiation damage. Under aerobic conditions, BSO and DEM treatment gave a small sensitization of 10-20 per cent for the three types of radiation damage. Also under severely hypoxic conditions (0.01 microM oxygen in the medium) the sensitizing effect of both compounds on the induction of ssb and dsb and on cell killing was small (0-30 per cent). At somewhat higher concentrations of oxygen (0.5-10 microM) however, the sensitization amounted to about 90 per cent for the induction of ssb and dsb and about 50 per cent for cell killing. These results strengthen the widely accepted idea that intracellular SH-compounds compete with oxygen and other electron-affinic radiosensitizers with respect to reaction with radiation-induced damage, thus preventing the fixation of DNA damages by oxygen. These results imply that the extent to which SH-compounds affect the radiosensitivity of cells in vivo depends strongly on the local concentration of oxygen.  相似文献   

18.
The role of thiols in cellular response to radiation and drugs   总被引:3,自引:0,他引:3  
Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme A. GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Some nitroheterocyclic radiosensitizing drugs also deplete cellular thiols under aerobic conditions. Such reactivity may be the reason that they show anomalous radiation sensitization (i.e., better than predicted on the basis of electron affinity). Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole. In conclusion, we propose an altered thiol model which includes a mechanism for thiol involvement in the aerobic radiation response of cells. This mechanism involves both thiol-linked hydrogen donation to oxygen radical adducts to produce hydroperoxides followed by a GSH peroxidase-catalyzed reduction of the hydroperoxides to intermediates entering into metabolic pathways to produce the original molecule.  相似文献   

19.
Glutathione (GSH), the major cellular protectant against reactive oxygen and nitrogen species, is compartmentalized in a cytosolic (c) and a mitochondrial (mt) pool. We investigated how c-GSH and mt-GSH are differentially affected by endogenously produced nitric oxide (NO). Microglial cell line (N9) cultures were immunostimulated with lipopolysaccharide/interferon-gamma to elicit the inducible isoform of NO synthase (iNOS). Despite a significant reduction in total GSH, the mt-GSH remained nearly unaffected by iNOS-mediated NO production. To investigate possible consequences of GSH depletion on the mitochondrial membrane potential, we used buthionine sulfoximine (BSO) to reduce separately the c-GSH, whereas ethacrynic acid (EA) was applied to deplete both mt-GSH and c-GSH. The mitochondrial membrane potential was more vulnerable to NO exposure in EA-pretreated cultures than in BSO-pretreated cultures, indicated by a potentiated release of tetramethylrhodamine from mitochondria into the cytosol. To relate the EA-mediated decrease in mitochondrial membrane potential to the oxidant buildup after GSH depletion, we loaded the cells with the oxidant-sensitive fluorochrome 2',7'-dihydrodichlorofluorescein (DCF) diacetate. EA treatment caused an increase in DCF fluorescence over time that was potentiated when the iNOS expression was stimulated. Inhibition of NO production abolished this effect. We conclude that endogenous NO production in microglial cells does not compromise the mt-GSH pool which, in turn, might explain the ability of these cells to combat high-output NO production.  相似文献   

20.
In this article, the effects of allicin, a biological active compound of garlic, on HL60 and U937 cell lines were examined. Allicin induced growth inhibition and elicited apoptotic events such as blebbing, mitochondrial membrane depolarization, cytochrome c release into the cytosol, activation of caspase 9 and caspase 3 and DNA fragmentation. Pretreatment of HL60 cells with cyclosporine A, an inhibitor of the mitochondrial permeability transition pore (mPTP), inhibited allicin-treated cell death. HL60 cell survival after 1 h pretreatment with cyclosporine A, followed by 16 h in presence of allicin (5 microM) was approximately 80% compared to allicin treatment alone (approximately 50%). Also N-acetyl cysteine, a reduced glutathione (GSH) precursor, prevented cell death. The effects of cyclosporine A and N-acetyl cysteine suggest the involvement of mPTP and intracellular GSH level in the cytotoxicity. Indeed, allicin depleted GSH in the cytosol and mitochondria, and buthionine sulfoximine, a specific inhibitor of GSH synthesis, significantly augmented allicin-induced apoptosis. In HL60 cells treated with allicin (5 microM, 30 min) the redox state for 2GSH/oxidized glutathione shifted from EGSH -240 to -170 mV. The same shift was observed in U937 cells treated with allicin at a higher concentration for a longer period of incubation (20 microM, 2 h). The apoptotic events induced by various concentrations of allicin correlate to intracellular GSH levels in the two cell types tested (HL60: 3.7 nmol/10(6) cells; U937: 7.7 nmol/10(6) cells). The emerging mechanistic basis for the antiproliferative function of allicin, therefore, involves the activation of the mitochondrial apoptotic pathway by GSH depletion and by changes in the intracellular redox status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号