共查询到20条相似文献,搜索用时 0 毫秒
1.
The neural retina of adult goldfish can regenerate from an intrinsic source of proliferative neuronal progenitor cells, but it is not known whether the retina can regenerate by transdifferentiation of the retinal pigmented epithelium (RPE), a phenomenon demonstrated in adult newts. In this study, we asked whether following surgical removal of the neural retina in adult goldfish the RPE was capable of autonomously transdifferentiating and generating new neural retina. The retina was prelabeled by injecting the fluorescent dye Fluoro-Gold (FG) into the eye prior to surgical removal; this procedure ensured that residual retina was labeled with FG and could therefore be distinguished from unlabeled, regenerated retina. To examine the time course of retinal regeneration, and to identify regenerated retinal neurons, the thymidine analogue bromodeoxyuridine was injected intraocularly, and retinas were examined up to 2 months later. We found that the RPE did not transdifferentiate; instead, retinas regenerated only when pieces of residual neural retina were left intact. Under these circumstances, newly regenerated cells derived from proliferating cells intrinsic to the residual neural retina. When retinas were completely removed, as was evident from a lack of FG labeling, there was no retinal regeneration. © 1995 John Wiley & Sons, Inc. 相似文献
2.
3.
Yuichi Mazaki Makoto Mochii Ryuji Kodama Goro Eguchi 《Development, growth & differentiation》1996,38(4):429-437
When retinal pigmented epithelial cells (PEC) of chick embryos are cultured under appropriate conditions, the phenotype changes to that of lens cells through a process known as transdifferentiation. The first half of the process, characterized by dedifferentiation of PEC, is accompanied by a marked decrease in adhesiveness of PEC to collagen type I- or type IV-coated dishes. To understand the underlying mechanisms of this change, we analyzed the expression of integrins, which are major receptors for extracellular matrix components. Northern blot analysis with cDNA probes for chicken α3, α6, α8, αv, β1 and β5 integrin mRNA showed that the genes for all these integrins are transcribed at similar levels in PEC and dedifferentiated PEC (dePEC). Further analysis of β1 integrin, which is a major component of integrin heterodimers, showed that although the protein amount of β1 integrin was not changed, its localization at focal contacts seen in PEC was lost in dePEC. When anti-β1 integrin antibody was added to the PEC culture medium, a decrease of cell-substrate adhesiveness occurred, followed by a gradual change in both morphology and gene expression patterns to ones similar to those of dePEC. These findings suggest that an appropriate distribution of β1 integrin plays an essential role in maintaining the differentiated state of PEC through cell-substrate adhesion. 相似文献
4.
5.
Summary Distribution and organization of the extracellular glycoproteins, fibronectin and laminin, in clonal cultures of chick retinal
pigmented epithelial cells have been investigated using indirect immunofluorescence microscopy. Fibronectin is located on
the apical and basal cell surfaces and between the cells in the undifferentiated regions of the colony (outer edge and stratified
region). It seems to run parallel to intracellular microfilament bundles and to be associated with them across the cell membrane.
In the differentiated region of thecolony (center), it is located exclusively on the basal cell surface and seems to be primarily
associated with the collagen bundles of the basement membrane. The locations suggest that it may be necessary to stabilizing
the sheet of differentiated cells in the colony center. In all regions except the outer edge of the colony, laminin is associated
with the basal cell surfaces where it forms a meshwork of short, fine strands. The laminin has a totally different staining
pattern from the fibronectin and does not seem to be associated with collagen bundles. The location suggests that laminin
may be present in the basal lamina and may be involved in adhesion of the cells to the substratum.
This work was supported by Medical Research Council of Canada (MA-6337). 相似文献
6.
Summary In this report we compare attachment, morphology, and growth of retinal pigmented epithelial (RPE) cells isolated by either EDTA or dispase digestion and plated onto either uncoated substrata (plastic or glass) or substrata derivatized by covalent conjugation of proteins of reconstituted basement membrane gel. We show that the derivatized substrata promote better initial attachment and subsequent cell growth than the uncoated substrata. These effects are independent of the method of dissociation of cells from the tissue. Cell morphology, however, is strongly affected by the method used for tissue dispersion. The dispase-dissociated cells are very flat, display a circumferential arrangement of microfilaments and elaborate extensive arrays of vinculin-containing cell-to-cell junctions. In contrast, EDTA-dissociated cells are much less spread, display straight microfilament bundles criss-crossing the cytoplasm and have less extensive cell-to-cell junctions. The protein-derivatized substrata also promote maintenance of differentiated traits such as pigmentation, by the RPE cells. Supported by Medical Research Council grant MA-9713 and by a grant from the R P Eye Research Foundation. 相似文献
7.
《Developmental neurobiology》2017,77(9):1086-1100
In adult Xenopus eyes, when the whole retina is removed, retinal pigmented epithelial (RPE) cells become activated to be retinal stem cells and regenerate the whole retina. In the present study, using a tissue culture model, it was examined whether upregulation of matrix metalloproteinases (Mmps) triggers retinal regeneration. Soon after retinal removal, Xmmp9 and Xmmp18 were strongly upregulated in the tissues of the RPE and the choroid. In the culture, Mmp expression in the RPE cells corresponded with their migration from the choroid. A potent MMP inhibitor, 1,10‐PNTL, suppressed RPE cell migration, proliferation, and formation of an epithelial structure in vitro. The mechanism involved in upregulation of Mmps was further investigated. After retinal removal, inflammatory cytokine genes, IL‐1β and TNF‐α , were upregulated both in vivo and in vitro. When the inflammation inhibitors dexamethasone or Withaferin A were applied in vitro, RPE cell migration was severely affected, suppressing transdifferentiation. These results demonstrate that Mmps play a pivotal role in retinal regeneration, and suggest that inflammatory cytokines trigger Mmp upregulation, indicating a direct link between the inflammatory reaction and retinal regeneration. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1086–1100, 2017 相似文献
8.
Metallo CM Azarin SM Ji L de Pablo JJ Palecek SP 《Journal of cellular and molecular medicine》2008,12(3):709-729
Recent advances in human embryonic stem cell (hESC) biology now offer an alternative cell source for tissue engineers, as these cells are capable of proliferating indefinitely and differentiating to many clinically relevant cell types. Novel culture methods capable of exerting spatial and temporal control over the stem cell microenvironment allow for more efficient expansion of hESCs, and significant advances have been made toward improving our understanding of the biophysical and biochemical cues that direct stem cell fate choices. Effective production of lineage specific progenitors or terminally differentiated cells enables researchers to incorporate hESC derivatives into engineered tissue constructs. Here, we describe current efforts using hESCs as a cell source for tissue engineering applications, highlighting potential advantages of hESCs over current practices as well as challenges which must be overcome. 相似文献
9.
The vertebrate eye develops from the optic vesicle (OV), a laterally protrusive structure of the forebrain, by a coordinated interaction with surrounding tissues. The OV then invaginates to form an optic cup, and the lens placode develops to the lens vesicle at the same time. These aspects in the early stage characterize vertebrate eye formation and are controlled by appropriate dorsal-ventral coordination. In the present study, we performed surgical manipulation in the chick OV to remove either the dorsal or ventral half and examined the development of the remaining OV. The results show that the dorsal and ventral halves of the OV have a clearly different developmental pattern. When the dorsal half was removed, the remaining ventral OV developed into an entire eye, while the dorsal OV developed to a pigmented vesicle consisting of retinal pigmented epithelium alone. These results indicate that the ventral part of the OV retains the potency to develop the entire eye structure and plays an essential role in proper eye development. In subsequent manipulations of early chick embryos, it was found that only the anterior ventral quadrant of the OV has the potential to develop the entire eye and that no other part of the OV has a similar activity. Fgf8 expression was localized in this portion and no Fgf8 expression was observed within the OV when the ventral OV was removed. These results suggest that the anterior ventral portion of the OV plays a crucial role in the proper development of the eye, possibly generating the dorsal-ventral gradients of signal proteins within the eye primordium. 相似文献
10.
The lentectomized eye of larval Xenopus laevis can regenerate a lens by a process of lens-transdifferentiation of the cornea and pericorneal epidermis. These tissues can form the lens only when they become in direct communication with the environment of the vitreous chamber (neural retina) indicating that the eye cup plays a fundamental role in this process.
In this work the role of the eye cup in the maintainance of the lens-forming capacity of the cornea and pericorneal epidermis was studied by allowing these tissues to cover the enucleated orbit for different periods, and then implanting them into the vitreous chamber of the contralateral eye. Under these experimental conditions the maintainance of the lens-forming capacity of the cornea and pericorneal epidermis showed no significant correlation with the time from enucleation to implantation. 相似文献
In this work the role of the eye cup in the maintainance of the lens-forming capacity of the cornea and pericorneal epidermis was studied by allowing these tissues to cover the enucleated orbit for different periods, and then implanting them into the vitreous chamber of the contralateral eye. Under these experimental conditions the maintainance of the lens-forming capacity of the cornea and pericorneal epidermis showed no significant correlation with the time from enucleation to implantation. 相似文献
11.
Plouhinec JL Leconte L Sauka-Spengler T Bovolenta P Mazan S Saule S 《Developmental biology》2005,278(2):560-575
We have performed a detailed analysis of the expression pattern of the three gnathostome Otx classes in order to gain new insights into their functional evolution. Expression patterns were examined in the developing eye of a chondrichthyan, the dogfish, and an amniote, the chick, and compared with the capacity of paralogous proteins to induce a pigmented phenotype in cultured retina cells in cooperation with the bHLH-leucine zipper protein Mitf. This analysis indicates that each Otx class is characterized by highly specific and conserved expression features in the presumptive RPE, where Otx1 and Otx2, but not Otx5, are transcribed at optic vesicle stages, in the differentiating neural retina, where Otx2 and Otx5 show a conserved dynamic expression pattern, and in the forming ciliary process, a major site of Otx1 expression. Furthermore, the paralogous proteins of the dogfish and the mouse do not display any significant difference in their capacity to induce a pigmented phenotype, suggesting a functional equivalency in the specification and differentiation of the RPE. These data indicate that specific functions selectively involving each Otx orthology class were fixed prior to the gnathostome radiation and highlight the prominent role of regulatory changes in the functional diversification of the multigene family. 相似文献
12.
对不同浓度的亚硒酸钠在体外对αA及β23晶体蛋白基因转录的影响作了初步的研究.结果发现,随着亚硒酸钠浓度的升高,αA基因的转录下降;而当亚硒酸钠浓度升至5×10-5 mol/L时,αA基因的转录又呈反跳性回升;提示αA晶体蛋白在晶体细胞内,至少应答于高浓度的硒,可能作为一种应激蛋白表达.而随着硒浓度的增加,β23基因的转录则呈现出先升后降的双相变化;提示一定浓度的硒可能借某种机制影响或改变晶体上皮细胞的分化状态. 相似文献
13.
Summary Isolated amphibian (Triturus alpestris) gastrula ectoderm was treated with cyclic nucleotides for 24 h and cultured up to 12 days. Explants treated with$cyclic N6-Monobutyryl-adenosine-35-monophosphate, cyclic Dibutyryladenosine-35-monophosphate and cyclic Dibutyrylguanosine-35-monophosphate in a concentration of 10–3 and 10–5 M did not differentiate into mesoderm- or endoderm-derived tissues. The number of explants with small neural and neuroid structures did not exceed the percentage found in the control series. Inductions could also not be obtained when ectoderm was dissociated prior to the treatment with cyclic nucleotides, or when theophylline (which inhibits phosphodiesterase) was added to the culture medium. The results are discussed with regard to the possible mode of action of the vegetalizing factor. 相似文献
14.
Summary Primary cultures of 10-day embryonic chick neural retinas were used to investigate early aspects of the mechanism of hydrocortisone
action on glutamine synthetase activity. As little as 2 hr of hydrocortisone exposure served to initiate significant increases
in the glutamine synthetase activity levels assayed after 24 hr culture. Time course studies indicated that the increase in
glutamine synthetase activity observed after 24 hr in culture resulted from a two-phase rise in activity and that cycloheximide
was effective in suppressing the second-phase rise. Additional inhibition studies demonstrated that the second-phase increase
in enzyme activity required continuous protein synthesis during the initial 6 hr. The evidence suggests a mechanism of hydrocortisone
action involving the production of a protein which is important for the induction of glutamine synthetase activity by hydrocortisone.
This work was supported by a National Science Foundation (U.S.A.) Training Grant. 相似文献
15.
Masasuke Araki Mikaru Yamao † Masaoki Tsudzuki ‡ 《Development, growth & differentiation》1998,40(2):167-176
The neural retina and retinal pigment epithelium (RPE) diverge from the optic vesicle during early embryonic development. They originate from different portions of the optic vesicle, the more distal part developing as the neural retina and the proximal part as RPE. As the distal part appears to make contact with the epidermis and the proximal part faces mesenchymal tissues, these two portions would encounter different environmental signals. In the present study, an attempt has been made to investigate the significance of interactions between the RPE and mesenchymal tissues that derive from neural crest cells, using a unique quail mutant silver (B/B) as the experimental model. The silver mutation is considered to affect neural crest-derived tissues, including the epidermal melanocytes. The homozygotes of the silver mutation have abnormal eyes, with double neural retinal layers, as a result of aberrant differentation of RPE to form a new neural retina. Retinal pigment epithelium was removed from early embryonic eyes (before the process began) and cultured to see whether it expressed any phenotype characteristic of neural retinal cells. When RPE of the B/B mutant was cultured with surrounding mesenchymal tissue, neural retinal cells were differentiated that expressed markers of amacrine, cone or rod cells. When isolated RPE of the B/B mutant was cultured alone, it acquired pigmentation and did not show any property characteristic of neural retinal cells. The RPE of wild type quail always differentiated to pigment epithelial cells. In the presence of either acidic fibroblast growth factor (aFGF) or basic FGF (bFGF), the RPE of the B/B mutant differentiated to neural retinal cells in the absence of mesenchymal tissue, but the RPE of wild type embryos only did so in the presence of 10–40 times as much aFGF or bFGF. These observations indicate that genes responsible for the B/B mutation are expressed in the RPE as well as in those cells that have a role in the differentiation of neural crest cells. They further suggest that development of the neural retina and RPE is regulated by some soluble factor(s) that is derived from or localized in the surrounding embryonic mesenchyme and other ocular tissues, and that FGF may be among possible candidates. 相似文献
16.
Embryos of the amphipod crustacean Orchestia cavimana are examined during cleavage, gastrulation, and segmentation by using in vivo labelling. Single blastomeres of the 8- and 16-cell stages were labelled with DiI to trace cell lineages. Early cleavage follows a distinct pattern and the a/p and d/v body axes are already determined at the 4- and 8-cell stages, respectively. In these stages, the germinal rudiment and the naupliar mesoderm can be traced back to a single blastomere each. In addition, the ectoderm and the postnaupliar mesoderm are separated into right and left components. At the16-cell stage, naupliar ectoderm is divided from the postnaupliar ectoderm, and extraembryonic lineages are separated from postnaupliar mesoderm and endoderm. From our investigation, it is evident that the cleavage pattern and cell lineage of Orchestia cavimana are not of the spiral type. Furthermore, the results of the labelling show many differences to cleavage patterns and cell lineages in other crustaceans, in particular, other Malacostraca. The cleavage and cell lineage patterns of the amphipod Orchestia are certainly derived within Malacostraca, whose ancestral cleavage mode was most likely of the superficial type. On the other hand, Orchestia exhibits a stereotyped cell division pattern during formation and differentiation of the germ band that is typical for malacostracans. Hence, a derived (apomorphic) early cleavage pattern is the ontogenetic basis for an evolutionarily older cell division pattern of advanced developmental stages. O. cavimana offers the possibility to trace the lineages and the fates of cells from early developmental stages up to the formation of segmental structures, including neurogenesis at a level of resolution that is not matched by any other arthropod system. 相似文献
17.
Koji Akasaka Hiroko Uemoto Fred Wilt Keiko Mitsunaga-Nakatsubo Hiraku Shimada 《Development, growth & differentiation》1997,39(3):373-379
Intracellular signaling mediated by calcium ions has been implicated as important in controlling cell activity. The ability of calcium ionophore (A23187), which causes an increase in calcium ion concentration in the cytoplasm, to alter the pattern of differentiation of cells during sea urchin development was examined. The addition of A23187 to embryos for 3h during early cleavage causes dramatic changes in their development during gastrulation. Using tissue-specific cDNA probes and antibodies, it was shown that A23187 causes the disruption of oral–aboral ectoderm differentiation of sea urchin embryos. The critical period for A23187 to disturb the oral–aboral ectoderm differentiation is during the cleavage stage, and treatment of embryos with A23187 after that time has little effect. The A23187 does not affect the formation of the three germ layers. These results indicate that intracellular signals mediated by calcium ions may play a key role in establishment of the oralaboral axis during sea urchin development. 相似文献
18.
John Gurdon has made major contributions to developmental biology in addition to his Nobel prize winning work on nuclear reprogramming. With the frog, Xenopus, as a vertebrate model, his work on mesoderm induction led him to identify a community effect required for tissue differentiation after progenitor cells have entered a specific mesodermal programme. It is in the context of this biologically important concept, with myogenesis as an example, that we have had most scientific exchanges. Here I trace my contacts with him, from an interest in histone regulation of gene expression and reprogramming, to myogenic determination factors as markers of early mesodermal induction, to the role of the community effect in the spatiotemporal control of skeletal muscle formation. I also recount some personal anecdotes from encounters in Oxford, Paris and Cambridge, to illustrate my appreciation of him as a scientist and a colleague. 相似文献
19.
In a large-scale forward-genetic screen, we discovered that a limited number of genes are required for the regulation of retinal stem cells after embryogenesis in zebrafish. In 18 mutants out of almost 2000 F2 families screened, the eye undergoes normal embryonic development, but fails to continue growth from the ciliary marginal zone (CMZ), the post-embryonic stem-cell niche. Class I-A mutants (5 loci) display lower amounts of proliferation in the CMZ, while nearly all cells in the retina appear differentiated. Class I-B mutants (2 loci) have a reduced CMZ with a concomitant expansion in the retinal pigmented epithelium (RPE), suggesting a common post-embryonic stem cell is the source for these neighboring cell types. Class II encompasses three distinct types of mutants (11 loci) with expanded CMZ, in which the progenitor population is arrested in the cell cycle. We also show that in at least one combination, the reduced CMZ phenotype is genetically epistatic to the expanded CMZ phenotype, suggesting that Class I genes are more likely to affect the stem cells and Class II the progenitor cells. Finally, a comparative mapping analysis demonstrates that the new genes isolated do not correspond to genes previously implicated in stem-cell regulation. Our study suggests that embryonic and post-embryonic stem cells utilize separable genetic programs in the zebrafish retina. 相似文献
20.
A.M. Vallés · B. Boyer · M. Denoyelle · D. Lentz · J.P. Thiery 《Differentiation; research in biological diversity》2001,69(1):38-48
In vitro studies have demonstrated the involvement of Src kinases in several aspects of cell scattering, including cell dissociation and motility. We have therefore sought to explore their functions in the context of the whole organism. Loss-of-function microinjection studies indicate that the ubiquitous Src, Fyn, and Yes tyrosine kinases are specifically implicated in Xenopus gastrulation movements. Injection of mRNAs coding for dominant negative forms of the ubiquitous members of the Src family, namely Fyn, Src, and Yes, perturbs gastrulation movements, resulting in the inability to close the blastopore. Injection of mRNA coding for Csk, a natural inhibitor of Src kinase activity, produces the same phenotypic alterations. The ubiquitous Src kinases have redundant functions in gastrulation movements since overexpression of one member of the family can compensate for the inhibition of another. Interfering mutants of the Src family also inhibit activin-induced morphogenetic movements of animal cap explants isolated from injected embryos. In contrast, these mutants do not interfere with mesoderm induction, as inferred from the presence of mesoderm derivatives and from the expression of early mesodermal markers in injected embryos. In addition, Src kinase activity measured by an in vitro kinase assay is elevated in gastrulating embryos and in FGF- and activin-treated animal caps, confirming the implication of Src enzymatic activity during gastrulation. Altogether, our results demonstrate that Src kinases are essential components of the machinery that drives gastrulation movements independent of mesoderm induction and suggest that Src activity is primarily implicated in cellular movements that take place during the process of cell intercalation. 相似文献