首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the ability of western equine encephalitis virus envelope glycoproteins (WEEV GP) to pseudotype lentiviral vectors. The titers of WEEV GP-pseudotyped human immunodeficiency virus type 1 (HIV) ranged as high as 8.0 × 104 IU/ml on permissive cells. Sera from WEEV-infected mice specifically neutralized these pseudotypes; cell transduction was also sensitive to changes in pH. The host range of the pseudotyped particles in vitro was somewhat limited, which is atypical for most alphaviruses. HIV vectors pseudotyped by WEEV GP may be a useful tool for characterizing WEEV cell binding and entry and screening for small-molecule inhibitors.  相似文献   

2.
We describe a method for the production of high-titer stocks of human immunodeficiency virus type 1 (HIV-1) pseudotyped with vesicular stomatitis virus envelope glycoprotein (VSV G). VSV G pseudotypes provide several advantages over other retroviral envelope proteins. The VSV G envelope is mechanically stable, enabling ultracentrifugal concentration of virions to high titers, and VSV G has a broad host range, enabling infection of many mammalian and nonmammalian cell types. VSV G pseudotypes of HIV-1 are useful for the study of HIV infection and replication kinetics and for the study of the function of specific viral proteins. We describe applications for the study of HIV-1 using VSV G pseudotypes. Additionally, we describe a method for pseudotyping retroviral vectors with VSV G. The same advantages of VSV G pseudotypes of HIV-1 apply to retroviral vectors; VSV G pseudotyped retroviral vectors may be used to introduce genes of interest into a wide variety of cell lines.  相似文献   

3.
Bone-marrow-derived mesenchymal stem cells (MSCs) have attracted considerable attention as tools for the systemic delivery of therapeutic proteins in vivo, and the ability to efficiently transfer genes of interest into such cells would create a number of therapeutic opportunities. We have designed and tested a series of human immunodeficiency virus type 1 (HIV-1)-based vectors and vectors based on the oncogenic murine stem cell virus to deliver and express transgenes in human MSCs. These vectors were pseudotyped with either the vesicular stomatitis virus G (VSV-G) glycoprotein (GP) or the feline endogenous virus RD114 envelope GP. Transduction efficiencies and transgene expression levels in MSCs were analyzed by quantitative flow cytometry and quantitative real-time PCR. While transduction efficiencies with virus particles pseudotyped with the VSV-G GP were found to be high, RD114 pseudotypes revealed transduction efficiencies that were 1 to 2 orders of magnitude below those observed with VSV-G pseudotypes. However, chimeric RD114 GPs, with the transmembrane and extracellular domains fused to the cytoplasmic domain derived from the amphotropic Moloney murine leukemia virus 4070A GP, revealed about 15-fold higher titers relative to the unmodified RD114 GP. The transduction efficiencies in human MSCs of HIV-1-based vectors pseudotyped with the chimeric RD114 GP were similar to those obtained with HIV-1 vectors pseudotyped with the VSV-G GP. Our results also indicate that RD114 pseudotypes were less toxic than VSV-G pseudotypes in human MSC progenitor assays. Taken together, these results suggest that lentivirus pseudotypes bearing alternative Env GPs provide efficient tools for ex vivo modification of human MSCs.  相似文献   

4.
Venezuelan equine encephalitis virus (VEEV) is one of the most pathogenic members of the Alphavirus genus in the Togaviridae family. This genus is divided into the Old World and New World alphaviruses, which demonstrate profound differences in pathogenesis, replication, and virus-host interactions. VEEV is a representative member of the New World alphaviruses. The biology of this virus is still insufficiently understood, particularly the function of its nonstructural proteins in RNA replication and modification of the intracellular environment. One of these nonstructural proteins, nsP3, contains a hypervariable domain (HVD), which demonstrates very low overall similarity between different alphaviruses, suggesting the possibility of its function in virus adaptation to different hosts and vectors. The results of our study demonstrate the following. (i) Phosphorylation of the VEEV nsP3-specific HVD does not play a critical role in virus replication in cells of vertebrate origin but is important for virus replication in mosquito cells. (ii) The VEEV HVD is not required for viral RNA replication in the highly permissive BHK-21 cell line. In fact, it can be either completely deleted or replaced by a heterologous protein sequence. These variants require only one or two additional adaptive mutations in nsP3 and/or nsP2 proteins to achieve an efficiently replicating phenotype. (iii) However, the carboxy-terminal repeat in the VEEV HVD is indispensable for VEEV replication in the cell lines other than BHK-21 and plays a critical role in formation of VEEV-specific cytoplasmic protein complexes. Natural VEEV variants retain at least one of the repeated elements in their nsP3 HVDs.  相似文献   

5.
Targeted gene transduction to specific tissues and organs through intravenous injection would be the ultimate preferred method of gene delivery. Here, we report successful targeting in a living animal through intravenous injection of a lentiviral vector pseudotyped with a modified chimeric Sindbis virus envelope (termed m168). m168 pseudotypes have high titer and high targeting specificity and, unlike other retroviral pseudotypes, have low nonspecific infectivity in liver and spleen. A mouse cancer model of metastatic melanoma was used to test intravenous targeting with m168. Human P-glycoprotein was ectopically expressed on the surface of melanoma cells and targeted by the m168 pseudotyped lentiviral vector conjugated with antibody specific for P-glycoprotein. m168 pseudotypes successfully targeted metastatic melanoma cells growing in the lung after systemic administration by tail vein injection. Further development of this targeting technology should result in applications not only for cancers but also for genetic, infectious and immune diseases.  相似文献   

6.
Sera from human immunodeficiency virus type 1 (HIV-1)-infected North American patients recognized a fusion protein expressing a V3 loop from a clade B primary isolate virus (JR-CSF) but not from a clade A primary isolate virus (92UG037.8), while most sera from Cameroonian patients recognized both fusion proteins. Competition studies of consensus V3 peptides demonstrated that the majority of the cross-reactive Cameroonian sera contained cross-reactive antibodies that reacted strongly with both V3 sequences. V3-specific antibodies purified from all six cross-reactive sera examined had potent neutralizing activity for virus pseudotyped with envelope proteins (Env) from SF162, a neutralization-sensitive clade B primary isolate. For four of these samples, neutralization of SF162 pseudotypes was blocked by both the clade A and clade B V3 fusion proteins, indicating that this activity was mediated by cross-reactive antibodies. In contrast, the V3-reactive antibodies from only one of these six sera had significant neutralizing activity against viruses pseudotyped with Envs from typically resistant clade B (JR-FL) or clade A (92UG037.8) primary isolates. However, the V3-reactive antibodies from these cross-reactive Cameroonian sera did neutralize virus pseudotyped with chimeric Envs containing the 92UG037.8 or JR-FL V3 sequence in Env backbones that did not express V1/V2 domain masking of V3 epitopes. These data indicated that Cameroonian sera frequently contain cross-clade reactive V3-directed antibodies and indicated that the typical inability of such antibodies to neutralize typical, resistant primary isolate Env pseudotypes was primarily due to indirect masking effects rather than to the absence of the target epitopes.  相似文献   

7.
Lymphocytic choriomeningitis virus (LCMV) is a noncytopathic arenavirus shown to infect a broad range of different cell types. Here, we combined the beneficial characteristics of the LCMV glycoprotein (LCMV-GP) and those of retroviral vectors to generate a new, safe, and efficient gene transfer system. These LCMV-GP pseudotypes were systematically compared with vectors containing the widely used amphotropic murine leukemia virus envelope (A-MLVenv) or the vesicular stomatitis virus G protein (VSV-G). Production of LCMV-GP-pseudotyped oncoretroviral and lentiviral vectors by transient transfection resulted in vector titers similar to those with A-MLVenv or VSV-G. In contrast to A-MLVenv particles, LCMV-GP pseudotypes could be efficiently concentrated by ultracentrifugation without loss of vector titer. Unlike the cell-toxic VSV-G, a stable retroviral packaging cell line constitutively expressing LCMV-GP could be established. Vectors pseudotyped with LCMV-GP efficiently transduced many cell lines from different species and tissues relevant for gene therapy. Transduction of human glioma cells was studied in detail. These cells are a major target for cancer gene therapy and were transduced more efficiently with LCMV-GP-pseudotyped vectors than with the generally used A-MLVenv particles. The high stability, low toxicity, and broad host range make LCMV-GP-pseudotyped vectors attractive for gene transfer applications. The recombinant LCMV-GP-pseudotyped vectors will also allow functional characterization of naturally occurring and recombinant LCMV-GP variants.  相似文献   

8.
BACKGROUND: Efficient gene transfer to bone marrow derived mesenchymal stem cells (MSC) would provide an important opportunity to express potent anticancer agents in the tumour microenvironment because of their contribution to the tumour stroma. METHODS: HIV-based lentiviral vectors were pseudotyped with four different envelope proteins; amphotropic murine leukaemia virus (ampho), murine leukaemia virus (10A1), feline endogenous virus (RD114), and the vesicular stomatitis virus glycoprotein (VSVG). These pseudotypes were examined for transduction efficiency in human bone marrow derived MSC. The effect of lentiviral expression of truncated soluble vascular endothelial growth factor decoy receptor (tsFlk-1) in MSC on growth of Raji cells was determined, both in vitro and in vivo. RESULTS: All lentiviral vectors produced significant levels of transduction at an multiplicity of infection (MOI) of 1, those bearing the RD114 envelope glycoprotein consistently produced higher transduction levels (mean 70 +/- 6%) compared with the other pseudotyped lentiviral vectors, although there was significant inter-donor variation. Stable transgene expression was achieved after multiple rounds of transduction with VSVG-pseudotyped particles, without alteration in the differentiative capacity of transduced cells. Co-injection of MSC stably expressing tsFlk-1 with Raji Burkitt's lymphoma cells significantly impaired subcutaneous tumour growth in immunodeficient mice when compared to controls where either unmanipulated MSC or GFP-expressing MSC were used. CONCLUSIONS: Human MSC are easily transduced by pseudotyped lentiviral particles but there is inter-donor variation in transduction efficiency. Gene-modified MSC expressing a gene of therapeutic potential can moderate growth of haematological malignancies.  相似文献   

9.
N Emi  T Friedmann    J K Yee 《Journal of virology》1991,65(3):1202-1207
Mixed infection of a cell by vesicular stomatitis virus (VSV) and retroviruses results in the production of progeny virions bearing the genome of one virus encapsidated by the envelope proteins of the other. The mechanism for the phenomenon of pseudotype formation is not clear, although specific recognition of a viral envelope protein by the nucleocapsid of an unrelated virus is presumably involved. In this study, we used Moloney murine leukemia virus (MoMLV)-based retroviral vectors encoding the gene for neomycin phosphotransferase to investigate the interaction between the VSV G protein and the retroviral nucleocapsid during the formation of MoMLV(VSV) pseudotypes. Our results show that VSV G protein can be incorporated into the virions of retrovirus in the absence of other VSV-encoded proteins or of retroviral envelope protein. Infection of hamster cells by MoMLV(VSV) pseudotypes gave rise to neomycin phosphotransferase-resistant colonies, and addition of anti-VSV serum to the virus preparations completely abolished the infectivity of MoMLV(VSV) pseudotypes. It should be possible to use existing mutants of VSV G protein in the system described here to identify the signals that are important for the formation of MoMLV(VSV) pseudotypes.  相似文献   

10.
11.
Many host cell surface proteins, including viral receptors, are incorporated into enveloped viruses. To address the functional significance of these host proteins, murine leukemia viruses containing the cellular receptors for Rous sarcoma virus (Tva) or ecotropic murine leukemia virus (MCAT-1) were produced. These receptor-pseudotyped viruses efficiently infect cells expressing the cognate viral envelope glycoproteins, with titers of up to 105 infectious units per milliliter for the Tva pseudotypes. Receptor and viral glycoprotein specificity and functional requirements are maintained, suggesting that receptor pseudotype infection recapitulates events of normal viral entry. The ability of the Tva and MCAT-1 pseudotypes to infect cells efficiently suggests that, in contrast to human immunodeficiency virus type 1 entry, neither of these retroviral receptors requires a coreceptor for membrane fusion. In addition, the ability of receptor pseudotypes to target infected cells suggests that they may be useful therapeutic reagents for directing infection of viral vectors. Receptor-pseudotyped viruses may be useful for identifying new viral receptors or for defining functional requirements of known receptors. Moreover, this work suggests that the production of receptor pseudotypes in vivo could provide a mechanism for expanded viral tropism with potential effects on the pathogenesis and evolution of the virus.  相似文献   

12.
Summary A new class of retroviral vector pseudotypes have an expanded host species range and can be concentrated to high titers by ultracentrifugation. These pantropic vectors contain the genome of the murine leukemia virus-based vectors and the envelope protein of vesicular stomatitis virus substituted for the amphotropic envelope protein. We tested (a) the ability of pseudotyped (pantropic) and unmodified (amphotropic) vectors to stably infect three diffeentXenopus laevis cell lines, including one derived from the embryonic retina; and (b) the ability of the concentrated pseudotyped virus to infect embryos and to mediate foreign gene expression in the embryonic CNS. Expression of the neomycin phosphotransferase gene and single copy integration of the provirus into the genome of the cell lines was demonstrated. Surprisingly, the amphotropic and pantropic vectors generated neomycin-resistant clones with similar efficiency. PCR amplification of genomic DNA from single stage 10, 20, and 25 embryos microinjected in the blastocoel or neural tube cavities with concentrated pantropic vector (108 cfu/ml) revealed proviral DNA. Microinjection of a concentrated pantropic vector containing the coding sequence for the β-galactosidase gene into the neural tube lumen of 24-h embryos yielded β-galactosidase expressing cells in the brain. Thus, retroviral vectors provide an additional approach to existing strategies for gene transfer inXenopus embryos and cell lines.  相似文献   

13.
Pseudotype virus vectors serve as a powerful tool for the study of virus receptor usage and entry. We describe the development of murine leukemia virus (MuLV) particles pseudotyped with the visna virus envelope glycoprotein and encoding a green fluorescent protein reporter as a tool to study the expression of the visna virus receptor. Functional MuLV/visna virus pseudotypes were obtained when the cytoplasmic tail of the visna virus envelope TM protein was truncated to 3, 7, or 11 amino acids in length. MuLV/visna virus particles were used to transduce a panel of cell types from various organisms, including sheep, goat, human, hamster, mouse, monkey, and quail. The majority of the cells examined were susceptible to MuLV/visna pseudotype viruses, supporting the notion that the visna virus cellular receptor is a widely expressed protein found in many species. Of 16 different cell types tested, only mouse embryo fibroblast NIH 3T3 cells, hamster ovary CHO cells, and the human promonocyte cell line U937 cells were not susceptible to transduction by the pseudotyped virus. The production of functional MuLV/visna virus pseudotypes has provided a sensitive, biologically relevant system to study visna virus cell entry and envelope-receptor interactions.  相似文献   

14.
15.
16.
Nef is an accessory protein of human immunodeficiency virus type 1 (HIV-1) that enhances the infectivity of progeny virions when expressed in virus-producing cells. The requirement for Nef for optimal infectivity is, at least in part, determined by the envelope (Env) glycoprotein, because it can be eliminated by pseudotyping HIV-1 particles with pH-dependent Env proteins. To investigate the role of Env in the function of Nef, we have examined the effect of Nef on the infectivity of Env-deficient HIV-1 particles pseudotyped with viral receptors for cells expressing cognate Env proteins. We found that Nef significantly enhances the infectivity of CD4-chemokine receptor pseudotypes for cells expressing HIV-1 Env. Nef also increased the infectivity of HIV-1 particles pseudotyped with Tva, the receptor for subgroup A Rous sarcoma virus (RSV-A), even though Nef had no effect if the pH-dependent Env protein of RSV-A was used for pseudotyping. However, Nef does not always enhance viral infectivity if the normal orientation of the Env-receptor interaction is reversed, because the entry of Env-deficient HIV-1 into cells expressing the vesicular stomatitis virus G protein was unaffected by Nef. Together, our results demonstrate that the presence of a viral Env protein during virus production is not required for the ability of Nef to increase viral infectivity. Furthermore, since the infectivity of Tva pseudotypes was blocked by inhibitors of endosomal acidification, we conclude that low-pH-dependent entry does not always bypass the requirement for Nef.  相似文献   

17.
Ross River virus (RRV) and Semliki Forest virus (SFV) are two alphaviruses that have a high degree of amino acid homology, as well as a very broad host range. We show here that envelope glycoproteins derived from both viruses can pseudotype human immunodeficiency virus type 1 (HIV-1)-derived lentivirus vectors. Both RRV and SFV glycoproteins considerably expand the host range of the lentivirus vector, and vectors can be efficiently concentrated by ultracentrifugation. A systematic analysis comparing the alphaviral glycoproteins to the vesicular stomatitis virus glycoprotein (VSV-G) revealed that lentivirus vectors incorporate RRV glycoproteins with an efficiency comparable to that of VSV-G. Both pseudotypes have comparable physical titers, but infectious titers with the RRV pseudotype are lower than with VSV-G. Incorporation of SFV glycoproteins into lentivirus vector is less efficient, leading to decreased physical and infectious titers. The transduction rates with VSV-G-, RRV-, and SFV-pseudotyped lentivirus vectors into adherent cell lines can be significantly increased by using a combination of Polybrene and plates coated with CH-296 recombinant fibronectin fragments. Together, our data suggest that RRV and SFV glycoproteins might be suitable as alternatives to VSV-G for pseudotyping lentivirus vectors.  相似文献   

18.
Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic virus. VEEV was a significant human and equine pathogen for much of the past century, and recent outbreaks in Venezuela and Colombia (1995), with about 100,000 human cases, indicate that this virus still poses a serious public health threat. The live attenuated TC-83 vaccine strain of VEEV was developed in the 1960s using a traditional approach of serial passaging in tissue culture of the virulent Trinidad donkey (TrD) strain. This vaccine presents several problems, including adverse, sometimes severe reactions in many human vaccinees. The TC-83 strain also retains residual murine virulence and is lethal for suckling mice after intracerebral (i.c.) or subcutaneous (s.c.) inoculation. To overcome these negative effects, we developed a recombinant, chimeric Sindbis/VEE virus (SIN-83) that is more highly attenuated. The genome of this virus encoded the replicative enzymes and the cis-acting RNA elements derived from Sindbis virus (SINV), one of the least human-pathogenic alphaviruses. The structural proteins were derived from VEEV TC-83. The SIN-83 virus, which contained an additional adaptive mutation in the nsP2 gene, replicated efficiently in common cell lines and did not cause detectable disease in adult or suckling mice after either i.c. or s.c. inoculation. However, SIN-83-vaccinated mice were efficiently protected against challenge with pathogenic strains of VEEV. Our findings suggest that the use of the SINV genome as a vector for expression of structural proteins derived from more pathogenic, encephalitic alphaviruses is a promising strategy for alphavirus vaccine development.  相似文献   

19.
Epizootic subtype IAB and IC Venezuelan equine encephalitis viruses (VEEV) readily infect the epizootic mosquito vector Aedes taeniorhynchus. The inability of enzootic subtype IE viruses to infect this mosquito species provides a model system for the identification of natural viral determinants of vector infectivity. To map mosquito infection determinants, reciprocal chimeric viruses generated from epizootic subtype IAB and enzootic IE VEEV were tested for mosquito infectivity. Chimeras containing the IAB epizootic structural gene region and, more specifically, the IAB PE2 envelope glycoprotein E2 precursor gene demonstrated an efficient infection phenotype. Introduction of the PE2 gene from an enzootic subtype ID virus into an epizootic IAB or IC genetic backbone resulted in lower infection rates than those of the epizootic parent. The finding that the E2 envelope glycoprotein, the site of epitopes that define the enzootic and epizootic subtypes, also encodes mosquito infection determinants suggests that selection for efficient infection of epizootic mosquito vectors may mediate VEE emergence.  相似文献   

20.
Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required.In this work, we describe the isolation of the anti-VEEV single chain Fragment variable (scFv), ToR67-3B4, from a non-human primate (NHP) antibody gene library. We report its recloning into the bivalent scFv-Fc format and further immunological and biochemical characterisation.The scFv-Fc ToR67-3B4 recognised viable as well as formalin and ?-propionolactone (?-Pl) inactivated virus particles and could be applied for immunoblot analysis of VEEV proteins and immuno-histochemistry of VEEV infected cells. It detected specifically the viral E1 envelope protein of VEEV but did not react with reduced viral glycoprotein preparations suggesting that recognition depends upon conformational epitopes. The recombinant antibody was able to detect multiple VEEV subtypes and displayed only marginal cross-reactivity to other Alphavirus species except for EEEV. In addition, the scFv-Fc fusion described here might be of therapeutic use since it successfully inactivated VEEV in a murine disease model. When the recombinant antibody was administered 6 hours post challenge, 80% to 100% of mice survived lethal VEEV IA/B or IE infection. Forty to sixty percent of mice survived when scFv-Fc ToR67-3B4 was applied 6 hours post challenge with VEEV subtypes II and former IIIA. In combination with E2-neutralising antibodies the NHP antibody isolated here could significantly improve passive protection as well as generic therapy of VEE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号