共查询到20条相似文献,搜索用时 15 毫秒
1.
Wagner J Fall CP Hong F Sims CE Allbritton NL Fontanilla RA Moraru II Loew LM Nuccitelli R 《Cell calcium》2004,35(5):433-447
The fertilization Ca2+ wave in Xenopus laevis is a single, large wave of elevated free Ca2+ that is initiated at the point of sperm-egg fusion and traverses the entire width of the egg. This Ca2+ wave involves an increase in inositol-1,4,5-trisphosphate (IP3) resulting from the interaction of the sperm and egg, which then results in the activation of the endoplasmic reticulum Ca2+ release machinery. The extraordinarily large size of this cell (1.2 mm diameter) together with the small surface region of sperm-receptor activation makes special demands on the IP3-dependent Ca2+ mobilizing machinery. We propose a detailed model of the fertilization Ca2+ wave in Xenopus eggs that requires an accompanying wave of IP3 production. While the Ca2+ wave is initiated by a localized increase of IP3 near the site of sperm-egg fusion, the Ca2+ wave propagates via IP3 production correlated with the Ca2+ wave-possibly via Ca(2+)-mediated PLC activation. Such a Ca(2+)-mediated IP(3) production wave has not been required previously to explain the fertilization Ca2+ wave in eggs; we argue this is necessary to explain the observed IP3 dynamics in Xenopus eggs. To test our hypothesis, we have measured the IP3 levels from 20 nl "sips" of the egg cortex during wave propagation. We were unable to detect the low IP3 levels in unfertilized eggs, but after fertilization, [IP3] ranged from 175 to 430 nM at the sperm entry point and from 120 to 700 nM 90 degrees away once the Ca2+ wave passed that region about 2 min after fertilization. Prior to the Ca2+ wave reaching that region the IP3 levels were undetectable. Since significant IP3 could not diffuse to this region from the sperm entry point within 2 min, this observation is consistent with a regenerative wave of IP3 production. 相似文献
2.
In the preceding paper Fontanilla and Nuccitelli (Biophysical Journal 75:2079-2087 (1998)) present detailed measurements of the shape and speed of the fertilization Ca2+ wave in Xenopus laevis eggs. In order to help interpret their results, we develop here a computational technique based on the finite element method that allows us to carry out realistic simulations of the fertilization wave. Our simulations support the hypothesis that the physiological state of the mature egg is bistable, i.e., that its cytoplasm can accommodate two alternative physiological Ca2+ concentrations: a low concentration characteristic of the prefertilization state and a greatly elevated concentration characteristic of the state following the passage of the wave. We explore this hypothesis by assuming that the bistability is due to the release and re-uptake properties of the endoplasmic reticulum (ER) as determined by inositol trisphosphate (IP3) receptor/Ca2+ channels and sarcoendoplasmic reticulum calcium ATPase (SERCA) pumps. When combined with buffered diffusion of Ca2+ in the cytoplasm, our simulations show that inhomogeneities in the Ca2+ release properties near the plasma membrane are required to explain the temporal and spatial dependences of the shape and speed of these waves. Our results are consistent with an elevated IP3 concentration near the plasma membrane in the unfertilized egg that is augmented significantly near the site of fertilization. These gradients are essential in determining the concave shape of the Ca2+ fertilization wave front. 相似文献
3.
We have used fluorescence ratio-imaging of fura-2 in the activating egg of Xenopus laevis to study the wave of increased intracellular free Ca2+ concentration ([Ca2+]i) while monitoring that of cortical granule exocytosis. Naturally matured eggs were dejellied, injected with fura-2, and activated by the iontophoresis of 1-30 nCoul of inositol-1,4,5-trisphosphate which triggers an immediate increase in free [Ca2+]i at the injection site. The Ca2+ rise spreads throughout the egg, reaching the opposite side in 5-8 min, and is followed by elevation of the fertilization envelope about 20-30 sec behind the [Ca2+]i wave. [Ca2+]i returns to preactivation levels within about 20 min after activation. We further studied the role of phosphatidylinositol-4,5-bisphosphate (PIP2) hydrolysis by microinjecting antibodies to PIP2 into the egg. PIP2 antibodies did not alter the propagation velocity of the wave but greatly reduced the amount of Ca2+ released in the egg cortex. These data suggest that PIP2 hydrolysis plays a role in the release of [Ca2+]i in the outer regions of the egg following activation. 相似文献
4.
John G. McCarron Susan Chalmers Debbi MacMillan Marnie L. Olson 《Journal of cellular physiology》2010,224(2):334-344
Smooth muscle responds to IP3‐generating agonists by producing Ca2+ waves. Here, the mechanism of wave progression has been investigated in voltage‐clamped single smooth muscle cells using localized photolysis of caged IP3 and the caged Ca2+ buffer diazo‐2. Waves, evoked by the IP3‐generating agonist carbachol (CCh), initiated as a uniform rise in cytoplasmic Ca2+ concentration ([Ca2+]c) over a single though substantial length (~30 µm) of the cell. During regenerative propagation, the wave‐front was about 1/3 the length (~9 µm) of the initiation site. The wave‐front progressed at a relatively constant velocity although amplitude varied through the cell; differences in sensitivity to IP3 may explain the amplitude changes. Ca2+ was required for IP3‐mediated wave progression to occur. Increasing the Ca2+ buffer capacity in a small (2 µm) region immediately in front of a CCh‐evoked Ca2+ wave halted progression at the site. However, the wave front does not progress by Ca2+‐dependent positive feedback alone. In support, colliding [Ca2+]c increases from locally released IP3 did not annihilate but approximately doubled in amplitude. This result suggests that local IP3‐evoked [Ca2+]c increases diffused passively. Failure of local increases in IP3 to evoke waves appears to arise from the restricted nature of the IP3 increase. When IP3 was elevated throughout the cell, a localized increase in Ca2+ now propagated as a wave. Together, these results suggest that waves initiate over a surprisingly large length of the cell and that both IP3 and Ca2+ are required for active propagation of the wave front to occur. J. Cell. Physiol. 224: 334–344, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
5.
Theoretical analysis of Ca wave propagation along the surface of intracellular stores 总被引:2,自引:0,他引:2
S L Mironov 《Journal of theoretical biology》1990,146(1):87-97
A mathematical model is described that accounts propagating waves of free cytoplasmic Ca arising from the activation of single Ca release channels. The [Ca] wave moves along the surface of intracellular stores and is supported by the subsequent activation of neighbouring Ca release channels. The model considers both activation and inactivation of the channels and the buffering of excess Ca in the cytoplasm. This non-dissipating wave of Ca concentration is shown to exist only for a certain range of the single channel conductance and the rate of Ca buffering in a cytoplasm. The wave velocity depends also on the other model parameters and generally comprises the values 1-300 microns sec-1. Data obtained are used to discuss the possibility of the delivery of free Ca concentration pulse from the surface membrane to a given point of the cell interior. 相似文献
6.
7.
An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis 总被引:23,自引:9,他引:14 下载免费PDF全文
The eggs of most or all animals are thought to be activated after fertilization by a transient increase in free cytosolic Ca2+ concentration ([Ca2+]i). We have applied Ca2+-selective microelectrodes to detect such an increase in fertilized eggs of the frog, Xenopus laevis. As observed with an electrode in the animal hemisphere, [Ca2+]i increased from 0.4 to 1.2 microM over the course of 2 min after fertilization, and returned to its original value during the next 10 min. No further changes in [Ca2+]i were detected through the first cleavage division. In eggs impaled with two Ca2+ electrodes, the Ca2+ pulse was observed to travel as a wave from the animal to the vegetal hemisphere, propagating at a rate of approximately 10 microns/s across the animal hemisphere. The apparent delay between the start of the fertilization potential and initiation of the Ca2+ wave at the sperm entry site as approximately 1 min. Through these observations describe only the behavior of subcortical [Ca2+]i, we suggest that our data represent the subcortical extension of the cortical Ca2+ wave thought to trigger cortical granule exocytosis, and we present evidence that both the timing and magnitude of the Ca2+ pulse we observed are consistent with this identity. This first quantification of subcortical [Ca2+]i during fertilization indicates that the Ca2+ transient is available to regulate processes (e.g., protein synthesis) in the subcortical cytosol. 相似文献
8.
Intercellular Ca2+ wave propagation through gap-junctional Ca2+ diffusion: a theoretical study 总被引:4,自引:0,他引:4 下载免费PDF全文
Intercellular regenerative calcium waves in systems such as the liver and the blowfly salivary gland have been hypothesized to spread through calcium-induced calcium release (CICR) and gap-junctional calcium diffusion. A simple mathematical model of this mechanism is developed. It includes CICR and calcium removal from the cytoplasm, cytoplasmic and gap-junctional calcium diffusion, and calcium buffering. For a piecewise linear approximation of the calcium kinetics, expressions in terms of the cellular parameters are derived for 1) the condition for the propagation of intercellular waves, and 2) the characteristic time of the delay of a wave encountered at the gap junctions. Intercellular propagation relies on the local excitation of CICR in the perijunctional space by gap-junctional calcium influx. This mechanism is compatible with low effective calcium diffusivity, and necessitates that CICR can be excited in every cell along the path of a wave. The gap-junctional calcium permeability required for intercellular waves in the model falls in the range of reported gap-junctional permeability values. The concentration of diffusive cytoplasmic calcium buffers and the maximal rate of CICR, in the case of inositol 1,4,5-trisphosphate (IP3) receptor calcium release channels set by the IP(3) concentration, are shown to be further determinants of wave behavior. 相似文献
9.
Runft LL Carroll DJ Gillett J Giusti AF O'Neill FJ Foltz KR 《Developmental biology》2004,269(1):220-236
At fertilization, eggs undergo a cytoplasmic free Ca2+ rise, which is necessary for stimulating embryogenesis. In starfish eggs, studies using inhibitors designed against vertebrate proteins have shown that this Ca2+ rise requires an egg Src family kinase (SFK) that directly or indirectly activates phospholipase C-gamma (PLC-gamma) to produce IP3, which triggers Ca2+ release from the egg's endoplasmic reticulum (ER) [reviewed in Semin. Cell Dev. Biol. 12 (2001) 45]. To examine in more detail the endogenous factors in starfish eggs that are required for Ca2+ release at fertilization, an oocyte cDNA encoding PLC-gamma was isolated from the starfish Asterina miniata. This cDNA, designated AmPLC-gamma, encodes a protein with 49% identity to mammalian PLC-gamma1. A 58-kDa Src family kinase interacted with recombinant AmPLC-gamma Src homology 2 (SH2) domains in a specific, fertilization-responsive manner. Immunoprecipitations of sea urchin egg PLC-gamma using an affinity-purified antibody directed against AmPLC-gamma revealed fertilization-dependent phosphorylation of PLC-gamma. Injecting starfish eggs with the tandem SH2 domains of AmPLC-gamma (which inhibits PLC-gamma activation) specifically inhibited Ca2+ release at fertilization. These results indicate that an endogenous starfish egg PLC-gamma interacts with an egg SFK and mediates Ca2+ release at fertilization via a PLC-gamma SH2 domain-mediated mechanism. 相似文献
10.
Modulation of intracellular free Ca2+ concentration by IP3-sensitive and IP3-insensitive nonmitochondrial Ca2+ pools 总被引:8,自引:0,他引:8
Intracellular Ca2+ pools play an important role in the adjustment of cytosolic free Ca2+ concentrations. This review summarizes the recent knowledge on receptor-mediated Ca2+ release and Ca2+ uptake mechanisms in Ca2+ stores of exocrine cells taking the exocrine pancreas and the parotid gland as an example. The intracellular mediator for agonist-induced Ca2+ release is inositol 1,4,5-trisphosphate (IP3) which acts by opening Ca2+ channels from the endoplasmic reticulum or a more specialized organelle called 'calciosome'. This Ca2+ release is the major event to increase cytosolic free Ca2+ concentrations of exocrine glands from a resting level of approximately 10(-7) mol/l to approximately 10(-6) mol/l. Subsequently also Ca2+ influx from the extracellular fluid into the cell is increased which involves the action of inositol 1,3,4,5-tetrakisphosphate (IP4). Intracellular nonmitochondrial Ca2+ reuptake occurs into IP3-sensitive (IsCaP) as well as into IP3-insensitive Ca2+ pools Ca2+ pools (IisCaP). While Ca2+ uptake into the IisCaP is mediated by a vanadate-sensitive Ca2+ pump, Ca2+ uptake into the IsCaP is mediated by a Ca2+/H+ exchanger at the expense of an H+ gradient which is established by a vacuolar type H+ pump present in the same Ca2+ pool. During stimulation both Ca2+ pools, IsCaP and IisCaP, are probably connected, the nature of which has not yet been clarified. It is suggested that GTP and/or IP4 control Ca2+ conveyance between intracellular Ca2+ pools by forming Ca2+-carrying junctions between membranes. Other models propose that Ca2+, which is released by IP3, induces Ca2+ release from another Ca2+ pool. Taking into account that H+ transport is present in IP3-sensitive Ca2+ pools the possibility of pH-regulated Ca2+ channels in the IisCaP, located in close neighbourhood to the IsCaP, is also considered. 相似文献
11.
Egg surface proteins of Xenopus laevis were compared between unfertilized and fertilized egg surfaces before the first cleavage. The egg surfaces were isolated in acetone. The macromolecular compositions of egg surfaces were analyzed by two-dimensional gel electrophoresis and were shown to contain at least 30 proteins with molecular weights ranging from 27,000 to 200,000. At 50 min after fertilization, one spot with a molecular weight of 160,000 disappeared and two bands with molecular weights of 190,000 and 180,000 increased gradually after fertilization. Although the disappearance of the spot was not affected by colchicine or cytochalasin B, intensification of the two bands was inhibited completely by the two agents. 相似文献
12.
The 45Ca2+ uptake and 45Ca2+ release in saponin-permeabilized human lymphocytes were studied. An ATP-dependent Ca2+ uptake into a nonmitochondrial, intracellular Ca2+ store is observed which is approx. 2 orders of magnitude greater than the ATP-independent Ca2+ uptake. The Ca2+ uptake is inhibited by vanadate, but it is insensitive to oligomycin and ruthenium red. IP3 induces dose-dependent 45Ca2+ release. For half-maximum Ca2+ release 0.25-0.5 microM IP3 is required. The results of our studies suggest that 45Ca2+ is predominantly stored within the endoplasmic reticulum of the lymphocytes. 相似文献
13.
M H Nathanson P J Padfield A J O'Sullivan A D Burgstahler J D Jamieson 《The Journal of biological chemistry》1992,267(25):18118-18121
An increase in cytosolic Ca2+ often begins as a Ca2+ wave, and this wave is thought to result from sequential activation of Ca(2+)-sensitive Ca2+ stores across the cell. We tested that hypothesis in pancreatic acinar cells, and since Ca2+ waves may regulate acinar Cl- secretion, we examined whether such waves also are important for amylase secretion. Ca2+ wave speed and direction was determined in individual cells within rat pancreatic acini using confocal line scanning microscopy. Both acetylcholine (ACh) and cholecystokinin-8 induced rapid Ca2+ waves which usually travelled in an apical-to-basal direction. Both caffeine and ryanodine, at concentrations that inhibit Ca(2+)-induced Ca2+ release (CICR), markedly slowed the speed of these waves. Amylase secretion was increased over 3-fold in response to ACh stimulation, and this increase was preserved in the presence of ryanodine. These results indicate that 1) stimulation of either muscarinic or cholecystokinin-8 receptors induces apical-to-basal Ca2+ waves in pancreatic acinar cells, 2) the speed of such waves is dependent upon mobilization of caffeine- and ryanodine-sensitive Ca2+ stores, and 3) ACh-induced amylase secretion is not inhibited by ryanodine. These observations provide direct evidence that Ca(2+)-induced Ca2+ release is important for propagation of cytosolic Ca2+ waves in pancreatic acinar cells. 相似文献
14.
Pfeiffer Fatima; Sternfeld Lutz; Schmid Andreas; Schulz Irene 《American journal of physiology. Cell physiology》1998,274(3):C663
We haveinvestigated control mechanisms involved in the propagation ofagonist-induced Ca2+ waves inisolated mouse pancreatic acinar cells. Using a confocal laser-scanningmicroscope, we were able to show that maximal stimulation of cells withacetylcholine (ACh, 500 nM) or bombesin (1 nM) caused an initialCa2+ release of comparable amountswith both agonists at the luminal cell pole. SubsequentCa2+ spreading to the basolateralmembrane was faster with ACh (17.3 ± 5.4 µm/s) than with bombesin(8.0 ± 2.2 µm/s). The speed of bombesin-inducedCa2+ waves could be increased upto the speed of ACh-induced Ca2+waves by inhibition of protein kinase C (PKC). Activation of PKCsignificantly decreased the speed of ACh-inducedCa2+ waves but had only littleeffect on bombesin-evoked Ca2+waves. Within 3 s after stimulation, production of inositol1,4,5-trisphosphate [Ins(1,4,5)P3]was higher in the presence of ACh compared with bombesin, whereasbombesin induced higher levels of diacylglycerol (DAG) than ACh. Thesedata suggest that the slower propagation speed of bombesin-inducedCa2+ waves is due to higheractivation of PKC in the presence of bombesin compared with ACh. Thehigher increase in bombesin- compared with ACh-induced DAG productionis probably due to activation of phospholipase D (PLD). Inhibition ofthe PLD-dependent DAG production by preincubation with 0.3% butanolled to an acceleration of the bombesin-induced Ca2+ wave. In further experiments,we could show that ruthenium red (100 µM), an inhibitor ofCa2+-inducedCa2+ release in skeletal muscle,also decreased the speed of ACh-induced Ca2+ waves. The effect ofruthenium red was not additive to the effect of PKC activation. Fromthe data, we conclude that, following Ins(1,4,5)P3-inducedCa2+ release in the luminal cellpole, secondary Ca2+ release fromstores, which are located in series between the luminal and the basalplasma membrane, modifies Ca2+spreading toward the basolateral cell side byCa2+-inducedCa2+ release. Activation of PKCleads to a reduction in Ca2+release from these stores and therefore could explain the slower propagation of Ca2+ waves in thepresence of bombesin compared with ACh. 相似文献
15.
Murthy Karnam S.; Makhlouf Gabriel M. 《American journal of physiology. Cell physiology》1998,274(5):C1199
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3. 相似文献
16.
Temperature dependence of Ca2+ wave properties in cardiomyocytes: implications for the mechanism of autocatalytic Ca2+ release in wave propagation. 下载免费PDF全文
Digital imaging microscopy of fluo-3 fluorescence was used to study the velocity and shape of intracellular Ca2+ waves in isolated rat cardiomyocytes as a function of temperature. Decreasing the temperature from 37 to 17 degrees C reduced the longitudinal wave velocity by a factor of 1.8 and remarkably slowed the decay of [Ca2+]i in the trailing flank of a wave. Using image analysis, rise times, and half-maximum decay times of local Ca2+ transients, which characterize the processes of local Ca2+ release and removal, were determined as a function of temperature. Apparent activation energies for wave front propagation, local Ca2+ release, and local Ca2+ removal were derived from Arrhenius plots and amounted to -23, -28, and -46 kJ/mol, respectively. The high activation energy of Ca2+ removal, which arises from the activity of the sarcoplasmic reticulum (SR) Ca2+ ATPase, relative to those of longitudinal wave propagation and local Ca2+ release excludes the hypothetical mechanism of regenerative "spontaneous Ca2+ release," in which Ca2+ that has been taken up from the approaching wavefront triggers Ca2+ release at a luminal site of the SR. It is consistent, however, with the hypothesis that Ca2+ wave propagation is based on Ca(2+)-induced Ca2+ release where Ca2+ triggers release on the cytosolic face of the SR. 相似文献
17.
18.
19.
《生物化学与生物物理学报:生物膜》2023,1865(7):184195
Numerous cellular processes are regulated by Ca2+ signals, and the endoplasmic reticulum (ER) membrane's inositol triphosphate receptor (IP3R) is critical for modulating intracellular Ca2+ dynamics. The IP3Rs are seen to be clustered in a variety of cell types. The combination of IP3Rs clustering and IP3Rs-mediated Ca2+-induced Ca2+ release results in the hierarchical organization of the Ca2+ signals, which challenges the numerical simulation given the multiple spatial and temporal scales that must be covered. The previous methods rather ignore the spatial feature of IP3Rs or fail to coordinate the conflicts between the real biological relevance and the computational cost. In this work, a general and efficient reduced-lattice model is presented for the simulation of IP3Rs-mediated multiscale Ca2+ dynamics. The model highlights biological details that make up the majority of the calcium events, including IP3Rs clustering and calcium domains, and it reduces the complexity by approximating the minor details. The model's extensibility provides fresh insights into the function of IP3Rs in producing global Ca2+ events and supports the research under more physiological circumstances. Our work contributes to a novel toolkit for modeling multiscale Ca2+ dynamics and advances knowledge of Ca2+ signals. 相似文献
20.
Extracellular ATP is a key neuromodulator of visual and auditory sensory epithelia. In the rat cochlea, pharmacological dissection indicates that ATP, acting through a highly sensitive purinergic/IP(3)-mediated signaling pathway with (little or) no involvement of ryanodine receptors, is the principal paracrine mediator implicated in the propagation of calcium waves through supporting and epithelial cells. Measurement of sensitivity to UTP and other purinergic agonists implicate P2Y(2) and P2Y(4) as the main P2Y receptor isoforms involved in these responses. Ca2+ waves, elicited under highly reproducible conditions by carefully controlling dose (1 microM) and timing of focal agonist application (0.2s), extended over radial distance greater than 160 microm from the source, identical to those activated by damaging single outer hair cells. Altogether, these results indicate that intercellular calcium waves are a robust phenomenon that confers a significant ability for cell-cell communication in the mammalian cochlea. Further ongoing research will reveal the roles that such Ca2+ waves play in the inner ear. 相似文献