首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene coding for human collagenase-3 (CLG3), a recently described matrix metalloproteinase produced by breast carcinomas, has been localized by fluorescence in situ hybridization on chromosome 11q22.3. Physical mapping of an isolated YAC clone containing CLG3 has revealed that this gene is tightly linked to those encoding other matrix metalloproteinases, including fibroblast collagenase (CLG1), stromelysin-1 (STMY1), and stromelysin-2 (STMY2). Further mapping of this region using pulsed-field gel electrophoresis has shown that the CLG3 gene is localized to the telomeric side of the matrix metalloproteinase cluster, the relative order of the loci being centromere—STMY2—CLG1—STMY1—CLG3—telomere.  相似文献   

2.
Restriction fragment length polymorphisms (RFLPs) detected using cDNA probes for conserved genes provide an important set of markers that anchor or link syntenic groups in a range of divergent mammalian species. DNA probes from sheep, cattle, pig, human and mouse were screened against sheep DNA samples and 24 new RFLP markers for sheep were identified. Among the loci tested, 22 had a homologue that has been mapped in humans. An RFLP for fibronectin (FN1) was linked to α-inhibin (INHA) at a distance of 5cM. The FN1 locus has been assigned to sheep chromosome 2q41–q44 and linkage between FN1 and INHA assigns INHA to the same chromosome in sheep. In addition to the new loci reported here, 28 RFLPs have been published previously by this group and these are collated together with RFLPs published from other laboratories. RFLPs have been reported for 86 loci in sheep. Fifty-four loci have been mapped to 16 different chromosomes.  相似文献   

3.
Summary In situ hybridization of tritiated cDNA probes for the gene for the B subunit of coagulation factor XIII localized the F13B locus to bands q31–q32.1 on human chromosome 1 and perhaps more precisely to sub-bands 1q31.2 or 1q31.3. Restriction fragment length polymorphisms (RFLPs) were detected with BglII, EcoRI and XbaI. Because the RFLPs detected with each of the three enzymes were concordant in every individual studied and since each showed a similar size difference, it was concluded that the RFLPs probably result from an insertion or deletion of length approximately 0.37–0.4 kb.  相似文献   

4.
Chromosomal locations of theAtm(ataxia–telangiectasia (AT)-mutated) andAcat1(mitochondrial acetoacetyl-CoA thiolase) genes in mouse, rat, and Syrian hamster were determined by direct R-banding FISH. Both genes were colocalized to the C-D band of mouse chromosome 9, the proximal end of q24.1 of rat chromosome 8, and qa4–qa5 of Syrian hamster chromosome 12. The regions in the mouse and rat were homologous to human chromosome 11q. Fine genetic linkage mapping of the mouse AT region was performed using the interspecific backcross mice.Atm, Acat1,andNpat,which is a new gene isolated from the AT region, and 12 flanking microsatellite DNA markers were examined. No recombinations were found among theAtm, Npat, Acat1,andD9Mit6loci, and these loci were mapped 2.0 cM distal toD9Mit99and 1.3 cM proximal toD9Mit102.Comparison of the linkage map of mouse chromosome 9 (MMU9) and that of human chromosome 11 (HSA11) indicates that there is a chromosomal rearrangement due to an inversion betweenEts1andAtm–Npat–Acat1and that the inversion of MMU9 originated from the chromosomal breakage at the boundary betweenGria4andAtm–Npat–Acat1on HSA11. This type of inversion appeared to be conserved in the three rodent species, mouse, rat, and Syrian hamster, using additional comparative mapping data with theRckgene.  相似文献   

5.
Summary In order to determine the regional localization of the Friedreich's ataxia (FA) gene on chromosome 9, the DNA probe DR47 (D9S5), which detects a restriction fragment length polymorphism (RFLP) in tight linkage with the disease, was hybridized in situ to metaphase chromosomes. Our results enable the D9S5 locus to be assigned to the 9q12–q13 region, thus indicating that this is also the localization of the FA gene.  相似文献   

6.
Autistic disorder (AD) is a neurodevelopmental disorder that affects approximately 2–10/10,000 individuals. Chromosome 15q11–q13 has been implicated in the genetic etiology of AD based on (1) cytogenetic abnormalities; (2) increased recombination frequency in this region in AD versus non-AD families; (3) suggested linkage with markers D15S156, D15S219, and D15S217; and (4) evidence for significant association with polymorphisms in the γ-aminobutyric acid receptor subunit B3 gene (GABRB3). To isolate the putative 15q11–q13 candidate AD gene, a genomic contig and physical map of the approximately 1.2-Mb region from the GABA receptor gene cluster to the OCA2 locus was generated. Twenty-one bacterial artificial chromosome (BAC) clones, 32 P1-derived artificial chromosome (PAC) clones, and 2 P1 clones have been isolated using the markers D15S540, GABRB3, GABRA5, GABRG3, D15S822, and D15S217, as well as 34 novel markers developed from the end sequences of BAC/PAC clones. In contrast to previous findings, the markers D15S822 and D15S975 have been localized within the GABRG3 gene, which we have shown to be approximately 250 kb in size. NotI and numerous EagI restriction enzyme cut sites were identified in this region. The BAC/PAC genomic contig can be utilized for the study of genomic structure and the identification and characterization of genes and their methylation status in this autism candidate gene region on human chromosome 15q11–q13.  相似文献   

7.
Using pulsed-field gel electrophoresis, and a range of different enzyme digests, we have established that both markers of each of the pairs CJ52.208/YNB3.12, NCAM/DRD2, and STMY/CJ52.75, on chromosome 11q22-23, show physical linkage on a single DNA fragment. We have also shown, using genetic linkage and haplotype analyses, that these markers lie within a region of approximately 18cM, which, it has been shown previously, is likely to contain the A-T gene. The relative positions of these marker loci, and the distance between them was determined in order to construct a detailed map which has allowed a more precise localization of the A-T gene. We have shown that in pairwise linkage analysis the strongest support for linkage to the A-T gene was with the STMY/CJ52.75 locus (Z = 5.59, theta = 0.0). A three-point analysis using the results from STMY/CJ52.75 and the closely linked marker phi 2.22 gave Z = 5.55, theta = 0.03. Despite persisting evidence of some linkage to Thy-1 our results are consistent with the existence of a single A-T locus on chromosome 11q22-23 and our best estimate of the position of this locus places it between NCAM/DRD2 and (STMY/CJ52.75, F2.22) (Z = 6.74), a region of approximately 5cM in males.  相似文献   

8.
The human stromelysin 3 (STMY3) gene, a new member of the matrix metalloproteinase (MMP) gene family, may contribute to breast cancer cell invasion, and has been localized by in situ hybridization to the long arm of chromosome 22. As demonstrated using a panel of somatic cell hybrids, the STMY3 gene is in band 22q11.2, in close proximity to the BCR gene involved in chronic myeloid leukemia, but far from the (11;22) translocation breakpoint observed in Ewing sarcoma. This position differs from that reported on chromosomes 11 and 16 for the other MMP genes, suggesting that stromelysin 3 could be a member of a new MMP subfamily.  相似文献   

9.
Epidermolysis bullosa simplex (EBS) is a dominantly inherited genodermatosis characterized by intraepidermal blister formation. Recent reports have suggested that EBS mutations may relate to keratin abnormalities. In this study, we conducted RFLP analyses to test the hypothesis that EBS is linked to one of the keratin gene clusters on chromosome 12 or chromosome 17. Although these keratin gene loci are not defined by RFLPs, several mapped RFLPs in the same chromosomal regions could be tested for linkage. A large EBS family with 14 affected and 12 unaffected individuals in three generations was analyzed for RFLP inheritance. Within this family there was no evidence for linkage of the EBS mutation to markers on chromosome 17q. However, there was evidence for close linkage to D12S17 located on chromosome 12q, with a maximum LOD score of 5.55 at theta = 0. Mapping of this mutation to chromosome 12 defines an EBS locus distinct from both EBS1 (Ogna) and EBS2 (Koebner), which are on chromosomes 8 and 1, respectively. Further mapping will determine whether this EBS locus on chromosome 12 resides within the keratin gene cluster at 12q11-q13.  相似文献   

10.
Fragments of the natural rat ceruloplasmin (Cp) gene and cDNA copies of rat Cp and transferring (Tf) mRNAs highly labelled by nick translation with 125I-dCTP were used as specific probes for assignment of these genes to the metaphase chromosomes of rat, mouse and man by in situ hybridization. Both Cp and Tf genes were found to be syntenic in rodents, occupying with high probability the regions 9D and 9F1–3 in mice and 7q11–13 and 7q31–34 in rats respectively. The significant increase in silver grain count over chromosome 15 in rats after hybridization with both the Cp and Tf probes suggests the presence of a related pseudogene cluster on this particular chromosome and thus favours its partial homeology to chromosome 7. The localization of silver grains in metaphase chromosome of man indicates subregional assignment of the Tf gene to 3q21. Use of the rat Cp DNA probe does not indicate synteny of the Cp and Tf genes in man and suggests the existence of a related DNA sequence in 15q11–13. The potential and limitations of the in situ hybridization technique with heterologous DNA probes for gene mapping in mammalian species are discussed.  相似文献   

11.
The multisystem autosomal recessive disease ataxia-telangiectasia (A-T) is determined by several genes, as evidenced by the existence of four complementation groups in this disorder. Using linkage analysis, the ATA (A-T complementation group A) gene was previously localized to chromosome 11, region q22-q23. Analysis of the segregation of RFLP markers from this region in a Jewish-Moroccan family assigned to group C indicates that the ATC (A-T complementation group C) gene localizes to chromosome 11q22-q23 as well.  相似文献   

12.
Of the five human alcohol dehydrogenase (ADH) genes located in the region q21–25 of chromosome 4, genetic markers have been reported previously only for class I enzymes, ADH1-3. Here, new restriction fragment length polymorphisms (RFLPs) are described for the genes of two other classes, ADH4 () and ADH5 ( or formaldehyde dehydrogenase, FDH). The frequencies and modes of inheritance of these RFLPs were determined with DNA both from unrelated individuals and from families. A polymorphic PstI site is assigned to the fourth intron of the ADH4 gene. Pairwise linkage disequilibrium calculations for these new RFLPs and already known RFLPs at the ADH2 and ADH3 loci establish strong linkage disequilibria between polymorphic MspI and BstXI sites in the ADH5 gene as well as between XbaI and MspI sites in the ADH3 gene. Furthermore, linkage disequilibria were detected between RFLPs of the ADH2 and ADH3 genes as well as between those of the ADH4 and ADH5 genes. The latter disequilibrium implies a hitherto unknown physical proximity of two genes belonging to different ADH classes. The RFLPs were used to construct chromosomal haplotypes that include three ADH classes. Of the 16 possible haplotypes for four RFLP markers used here, 10 were experimentally detected. The potential application of the ADH RFLPs and haplotypes in linkage or association studies of inherited diseases such as familial alcoholism is discussed.  相似文献   

13.
Adenylyl cyclase activity plays a central role in the regulation of most cellular processes. At least eight different adenylyl cyclases have been identified, which are endowed with various and sometimes opposing regulatory properties. Recently we have localized the human genes encoding two of these adenylyl cyclases: the gene for type 11 adenylyl cyclase is located on chromosome 2 (sub-band 2p15.3), the gene for type VIII is located on chromosome 8 (sub-band 8824.2). More recently the type I gene has been located on chromosome 7 (sub-band 7pl2–7p13). Using in situ hybridization, we have now localized the genes for three other adenylyl cyclases: the type III gene has been localized on chromosome 2 in the sub-band 2p22–2p24, the type V gene on chromosome 3 at position 3q13.2–3q21, and the type VI gene on chromosome 12 at position 12q12–12q13. It therefore appears that all adenylyl cyclase genes, known at present are located on different chromosomes and thus are likely to be independently regulated.  相似文献   

14.
We screened DNA from unrelated individuals for RFLPs in the muscle nicotinic acetylcholine receptor (AcChoR) genes. These RFLP markers can be used for genetic linkage and association studies to test the hypothesis that receptor structure or regulation is involved in the development of myasthenia gravis (MG). The cDNAs from four subunits (alpha, beta, gamma, and delta) of the murine muscle AcChoR were used as probes to identify RFLPs in the homologous human genes. Digestion of DNA from 15 unrelated individuals with a set of 10 restriction enzymes revealed 11 RFLPs. At least one RFLP was found for each subunit gene. Eight RFLPs were found at the linked gamma and delta gene loci, six with minor allele frequencies greater than 15%, making that linkage group a very informative marker locus (PIC = .72). PIC values were calculated for the RFLPs from allele and haplotype frequency estimates obtained from a population sample of 53 individuals. The delta gene was assigned by in situ hybridization to region q31----q34 of chromosome 2. All pairs of RFLPs were analyzed for linkage disequilibrium. Of the 16 pairs of RFLPs from the same gene or from the linked gamma and delta genes, 13 pairs showed evidence of disequilibrium that was significant, with P less than .05. The implications of these results are discussed.  相似文献   

15.
16.
Autosomal dominant cerebellar ataxia (ADCA) is a group of heterogeneous neurodegenerative disorders. By positional cloning, we have identified the gene strongly associated with a form of degenerative ataxia (chromosome 16q22.1-linked ADCA) that clinically shows progressive pure cerebellar ataxia. Detailed examination by use of audiogram suggested that sensorineural hearing impairment may be associated with ataxia in our families. After restricting the candidate region in chromosome 16q22.1 by haplotype analysis, we found that all patients from 52 unrelated Japanese families harbor a heterozygous C-->T single-nucleotide substitution, 16 nt upstream of the putative translation initiation site of the gene for a hypothetical protein DKFZP434I216, which we have called "puratrophin-1" (Purkinje cell atrophy associated protein-1). The full-length puratrophin-1 mRNA had an open reading frame of 3,576 nt, predicted to contain important domains, including the spectrin repeat and the guanine-nucleotide exchange factor (GEF) for Rho GTPases, followed by the Dbl-homologous domain, which indicates the role of puratrophin-1 in intracellular signaling and actin dynamics at the Golgi apparatus. Puratrophin-1--normally expressed in a wide range of cells, including epithelial hair cells in the cochlea--was aggregated in Purkinje cells of the chromosome 16q22.1-linked ADCA brains. Consistent with the protein prediction data of puratrophin-1, the Golgi-apparatus membrane protein and spectrin also formed aggregates in Purkinje cells. The present study highlights the importance of the 5' untranslated region (UTR) in identification of genes of human disease, suggests that a single-nucleotide substitution in the 5' UTR could be associated with protein aggregation, and indicates that the GEF protein is associated with cerebellar degeneration in humans.  相似文献   

17.
The region of mouse Chromosome (Chr) 7 containing the mouse pink-eyed dilution locus, p, is syntenic with human chromosome 15q11–q13, a region associated with three human syndromes, Prader-Willi syndrome (PWS), Angelman syndrome (AS), and a form of hypomelanosis of Ito (HI). Because some mutant alleles of p also share a subset of phenotypes with PWS, AS, and HI, the same gene or genes disrupted by p locus mutations are potentially involved in the phenotypes of PWS, AS, and HI.  相似文献   

18.
The genes encoding apolipoproteins AI, CIII, and AIV, three plasma proteins involved in lipid metabolism, are clustered within a 15-kb DNA segment (apoAI-CIII-AIV gene cluster) located on human chromosome 11 at band q23. The gene encoding the neural cell adhesion molecule (NCAM), a cell surface glycoprotein involved in cell-cell recognition during morphogenesis, is also located on chromosome 11, band q23. In this report, 12 previously described restriction fragment length polymorphisms (RFLPs) in the apoAI-CIII-AIV gene cluster were tested for cosegregation with a newly identified BamHI RFLP in the NCAM gene using 13 families. The results show that the apoAI-CIII-AIV gene cluster and the NCAM gene loci are linked with a maximum lod score of 15.9 at a recombination fraction of 0.028. In addition, an approach for the most efficient use of the apoAI-CIII-AIV gene cluster polymorphisms, based on the evaluation of their individual and cumulative heterozygosities, is presented.  相似文献   

19.
One hundred and ten markers were analysed for linkage in 218 F2 plants derived from two divergent cultivars (Védrantais and Songwhan Charmi) of Cucumis melo (L.). Thirty-four RFLPs, 64 RAPDs, one isozyme, four disease resistance markers and one morphological marker were used to construct a genetic map spanning 14 linkage groups covering 1390 cM of the melon genome. RAPD and RFLP markers detected similar polymorphism levels. RFLPs were largely due to base substitutions rather than insertion/deletions. Twelve percent of markers showed distorted segregation. Phenotypic markers consisted of two resistance genes against Fusarium wilt (Fom-1 and Fom-2), one gene (nsv) controlling the resistance to melon necrotic spot virus, one gene (Vat) conferring resistance to Aphis gossypii, and a recessive gene for carpel numbers (3 vs 5 carpels: p).  相似文献   

20.
We have obtained a partial cDNA and three BAC clones for the porcine insulin-like growth factor binding protein 1 gene (IGFBP-1). Results of fluorescence in situ and radiation hybrid (RH) mapping assigned this gene to porcine chromosome (SSC) 18q24-qter. We found two types of polymerase chain reaction–restriction-fragment-length polymorphisms (PCR–RFLP) in intron 2 by using FokI and AluI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号