首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M L Brader  D Borchardt  M F Dunn 《Biochemistry》1992,31(19):4691-4696
The R-state conformation of the Cu(II)-substituted insulin hexamer has been identified, and a number of its derivatives have been studied via 1H NMR, ESR, and UV-visible spectroscopy. This work establishes that the Cu(II)-substituted insulin hexamer undergoes an analogous T to R conformational transition in solution that has been identified previously for Zn(II)- and Co(II)-insulin hexamers [Roy, M., Brader, M.L., Lee, R. W.-K., Kaarsholm, N.C., Hansen, J., & Dunn, M.F. (1989) J. Biol. Chem. 264, 19081-19085]. The data indicate that each Cu(II) center of the R-state Cu(II)-insulin hexamer possesses a coordination site that is accessible to anions from solution. Both phenol and anionic ligands that coordinate to the Cu(II) ions are required to generate the necessary heterotropic interactions that stabilize the R-state structure. With phenylmethylthiolate (PMT), a Cu(II)-R6 adduct that displays the spectral features of blue (type 1) copper proteins is obtained. This complex is proposed to embody a pseudotetrahedral CuIIN3S(PMT) chromophore, in which N is HisB10 (imidazolyl). The remaining ligands examined gave rise to Cu(II)-R6 adducts that possessed the spectral characteristics of normal (type 2) Cu(II) proteins. Under reducing conditions, Cu(I)-T6 and Cu(I)-R6 hexamers have been identified.  相似文献   

2.
W Kadima 《Biochemistry》1999,38(41):13443-13452
The role of metal ions in the T- to R-allosteric transition is ascertained from the investigation of the T- to R-allosteric transition of transition metal ions substituted-insulin hexamers, as well as from the kinetics of their dissociation. These studies establish that ligand field stabilization energy (LFSE), coordination geometry preference, and the Lewis acidity of the metal ion in the zinc sites modulate the T- to R-state transition. (1)H NMR, (113)Cd NMR, and UV-vis measurements demonstrate that, under suitable conditions, Fe2+/3+, Ni2+, and Cd2+ bind insulin to form stable hexamers, which are allosteric species. (1)H NMR R-state signatures are elicited by addition of phenol alone in the case of Ni(II)- and Cd(II)-substituted insulin hexamers. The Fe(II)-substituted insulin hexamer is converted to the ferric analogue upon addition of phenol. For the Fe(III)-substituted insulin hexamer, appearance of (1)H NMR R-state signatures requires, additionally to phenol, ligands containing a nitrogen that can donate a lone pair of electrons. This is consistent with stabilization of the R-state by heterotropic interactions between the phenol-binding pocket and ligand binding to Fe(III) in the zinc site. UV-vis measurements indicate that the (1)H NMR detected changes in the conformation of the Fe(III)-insulin hexamer are accompanied by a change in the electronic structure of the iron site. Kinetic measurements of the dissociation of the hexamers provide evidence for the modulation of the stability of the hexamer by ligand field stabilization effects. These kinetic studies also demonstrate that the T- to R-state transition in the insulin hexamer is governed by coordination geometry preference of the metal ion in the zinc site and the compatibility between Lewis acidity of the metal ion in the zinc site and the Lewis basicity of the exogenous ligands. Evidence for the alteration of the calcium site has been obtained from (113)Cd NMR measurements. This finding adds to the number of known conformational changes that occur during the T- to R-transition and is an important consideration in the formulation of allosteric mechanisms of the insulin hexamer.  相似文献   

3.
The addition of phenols to hexameric insulin solutions produces a particularly stable hexamer, resulting from a rearrangement in which residues B1-B8 change from an extended conformation (T-state) to form an alpha-helix (R-state). The R-state is, in part, stabilized by nonpolar interactions between the phenolic molecule and residue B5 His at the dimer-dimer interface. The B5 His --> Tyr mutant human insulin was constructed to see if the tyrosine side chain would mimic the effect of phenol binding in the hexamer and induce the R-state. In partial support of this hypothesis, the molecule crystallized as a half-helical hexamer (T(3)R(3)) in conditions that conventionally promote the fully nonhelical (T6) form. As expected, in the presence of phenol or resorcinol, the B5 Tyr hexamers adopt the fully helical (R6) conformation. Molecular modeling calculations were performed to investigate the conformational preference of the T-state B5 Tyr side chain in the T(3)R(3) form, this side chain being associated with structural perturbations of the A7-A10 loop in an adjacent hexamer. For an isolated dimer, several different orientations of the side chain were found, which were close in energy and readily interconvertible. In the crystal environment only one of these conformations remains low in energy; this conformation corresponds to that observed in the crystal structure. This suggests that packing constraints around residue B5 Tyr result in the observed structural rearrangements. Thus, rather than promoting the R-state in a manner analogous to phenol, the mutation appears to destabilize the T-state. These studies highlight the role of B5 His in determining hexamer conformation and in mediating crystal packing interactions, properties that are likely be important in vivo.  相似文献   

4.
3-Nitro-4-hydroxybenzoate (3N4H) is a probe of the structure and dynamics of the metal-centered His B10 assembly sites of the insulin hexamer. Each His B10 site consists of a approximately 12 A-long cavity situated on the threefold symmetry axis. These sites play an important role in the storage and release of insulin in vivo. The allosteric behavior of the insulin hexamer is modulated by ligand binding to the His B10 zinc sites and to the phenolic pockets. Binding to these sites drives transitions among three allosteric states, designated T(6), T(3)R(3), and R(6). Although a wide variety of mono anions bind to the His B10 zinc sites of R(3), X-ray structures of ligands complexed to this site exist only for H(2)O, Cl(-), and SCN(-). This work combines one- and two-dimensional (1)H NMR and UV-Vis absorbance studies of the structure and dynamics of the 3N4H complex, which establish the following: (1). relative to the NMR time scale, 3N4H exchange between free and bound states is slow, while flipping among three equivalent orientations about the site threefold axis is fast; (2). binding of 3N4H perturbs resonances within the His B10 zinc site and generates NOEs between ligand resonances and the insulin C-alpha and side chain resonances of ValB2, AsnB3, LeuB6, and CysB7; and (3).3N4H exchange for other ligands is limited by a protein conformational transition. These results are consistent with coordination of the 3N4H carboxylate to the His B10 zinc ion and van der Waals interactions with Val B2, Asn B3, Leu B6, and Cys A7.  相似文献   

5.
Structurally, the T-->R transition of insulin mainly consists of a rearrangement of the N-terminal B-chain (residues B1-B8) from extended to helical in one or both of the trimers of the hexamer. The dependence of the transition on the nature of the ligands inducing it, such as inorganic anions or phenolic compounds, as well as of the metal ions complexing the hexamer, has been the subject of extensive investigations. This study explores the effect of helix-enhancing modifications of the N-terminal B-chain sequence where the transition actually occurs, with special emphasis on N-capping. In total 15 different analogues were prepared by semisynthesis. 80% of the hexamers of the most successful analogues with zinc were found to adopt the T3R3 state in the absence of any transforming ligands, as compared to only 4% of wild-type insulin. Transformation with SCN- ions can exceed the T3R3 state where it stops in the case of wild-type insulin. Full transformation to the R6 state can be achieved by only one-tenth the phenol concentration required for wild-type insulin, i.e. almost at the stoichiometric ratio of 6 phenols per hexamer.  相似文献   

6.
For hexamer formation of native insulin the repulsive potential of six B13 Glu carboxylate groups coming together in the centre is overcome by zinc binding to B10 His. Substitution of Gln for Glu in position B13 by site-directed mutagenesis, i.e. replacement of the repelling carboxylates by amide groups, which are offering H-bonding potential, enhances association and allows a metal-free hexamer to form. Merely upon addition of zinc ions this hexamer undergoes the T6----T3R3 respectively T6----R6 structural transition which in the native 2Zn insulin hexamer is inducible only by additives like inorganic anions or phenolic compounds. [B13 Gln]Insulin hexamers are transformed by phenolic compounds, but not by anions, even in the absence of any metal. The structural transformation of insulin can thus be brought about in two ways: By inorganic ions with the zinc ions as their points of attack, which preexist in the nontransformed hexamer, and by phenol, for which the binding sites close to the B5 histidines come into existence only with the transformation. Therefore transformed and non-transformed hexamers, i.e. molecules with helical and extended B chain N-terminus, must be related in a dynamic equilibrium. Phenol acts as a wedge jamming the structure in the transformed state and trapping the zinc ions. Combination of transformed 2Zn[B13 Gln]insulin and metal-free native insulin in the absence of additives results in a redistribution of the zinc ions in favour of native insulin which is an outcome of the dynamic equilibrium and also demonstrates an influence of B13 charge on metal binding affinity. Transformation of a single subunit in a hexamer would lead to bad contacts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Wan ZL  Huang K  Xu B  Hu SQ  Wang S  Chu YC  Katsoyannis PG  Weiss MA 《Biochemistry》2005,44(13):5000-5016
Naturally occurring mutations in insulin associated with diabetes mellitus identify critical determinants of its biological activity. Here, we describe the crystal structure of insulin Wakayama, a clinical variant in which a conserved valine in the A chain (residue A3) is substituted by leucine. The substitution occurs within a crevice adjoining the classical receptor-binding surface and impairs receptor binding by 500-fold, an unusually severe decrement among mutant insulins. To resolve whether such decreased activity is directly or indirectly mediated by the variant side chain, we have determined the crystal structure of Leu(A3)-insulin and investigated the photo-cross-linking properties of an A3 analogue containing p-azidophenylalanine. The structure, characterized in a novel crystal form as an R(6) zinc hexamer at 2.3 A resolution, is essentially identical to that of the wild-type R(6) hexamer. The variant side chain remains buried in a nativelike crevice with small adjustments in surrounding side chains. The corresponding photoactivatable analogue, although of low affinity, exhibits efficient cross-linking to the insulin receptor. The site of photo-cross-linking lies within a 14 kDa C-terminal domain of the alpha-subunit. This domain, unrelated in sequence to the major insulin-binding region in the N-terminal L1 beta-helix, is also contacted by photoactivatable probes at positions A8 and B25. Packing of Val(A3) at this interface may require a conformational change in the B chain to expose the A3-related crevice. The structure of insulin Wakayama thus evokes the reasoning of Sherlock Holmes in "the curious incident of the dog in the night": the apparent absence of structural perturbations (like the dog that did not bark) provides a critical clue to the function of a hidden receptor-binding surface.  相似文献   

8.
9.
Insulin conjugates in which the B1Phe residue has been chemically modified often exhibit a reduced tendency to associate into hexamers due to weakened interactions between subunits. The purpose of this study was to prepare a hexamer formulation for such insulin conjugates by using Co(III) as a coordinating metal ion. PEGylated insulin in which monomethoxypoly(ethylene glycol) (mPEG, Mr 5000 or 20,000) had been site-specifically attached to B1Phe was chosen as a model conjugate. Hexamerization of mPEG-insulin upon H2O2-mediated oxidation of Co(II) was kinetically and quantitatively analysed by visible spectrometry and size-exclusion HPLC. Co(III) mPEG-insulin hexamers thus obtained were extremely stable, existing mostly as a hexameric form even at nanomolar concentrations. A remarkable increase in hydrodynamic volumes was observed for Co(III) mPEG(20k)-insulin hexamers (1600 kDa), as well as Co(III) mPEG(5k)-insulin hexamers (300 kDa). Our results demonstrate the potential benefits of Co(III) hexamer formulation for weakly associating insulin conjugates in the treatment of diabetes.  相似文献   

10.
Hexameric insulin is an allosteric protein that undergoes transitions between three conformational states (T(6), T(3)R(3), and R(6)). These allosteric states are stabilized by the binding of ligands to the phenolic pockets and by the coordination of anions to the His B10 metal sites. Raman difference (RD) spectroscopy is utilized to examine the binding of phenolic ligands and the binding of thiocyanate, p-aminobenzoic acid (PABA), or 4-hydroxy-3-nitrobenzoic acid (4H3N) to the allosteric sites of T(3)R(3) and R(6). The RD spectroscopic studies show changes in the amide I and III bands for the transition of residues B1-B8 from a meandering coil to an alpha helix in the T-R transitions and identify the Raman signatures of the structural differences among the T(6), T(3)R(3), and R(6) states. Evidence of the altered environment caused by the approximately 30 A displacement of phenylalanine (Phe) B1 is clearly seen from changes in the Raman bands of the Phe ring. Raman signatures arising from the coordination of PABA or 4H3N to the histidine (His) B10 Zn(II) sites show these carboxylates give distorted, asymmetric coordination to Zn(II). The RD spectra also reveal the importance of the position and the type of substituents for designing aromatic carboxylates with high affinity for the His B10 metal site.  相似文献   

11.
Olsen HB  Kaarsholm NC 《Biochemistry》2000,39(39):11893-11900
Intracellular proteins are frequently modified by covalent addition of lipid moieties such as myristate. Although a functional role of protein lipidation is implicated in diverse biological processes, only a few examples exist where the structural basis for the phenomena is known. We employ the insulin molecule as a model to evaluate the detailed structural effects induced by myristoylation. Several lines of investigation are used to characterize the solution properties of Lys(B29)(N(epsilon)-myristoyl) des(B30) insulin. The structure of the polypeptide chains remains essentially unchanged by the modification. However, the flexible positions taken up by the hydrocarbon chain selectively modify key structural properties. In the insulin monomer, the myristoyl moiety binds in the dimer interface and modulates protein-protein recognition events involved in insulin dimer formation and receptor binding. Myristoylation also contributes stability expressed as an 30% increase in the free energy of unfolding of the protein. Addition of two Zn(2+)/hexamer and phenol results in the displacement of the myristoyl moiety from the dimer interface and formation of stable R(6) hexamers similar to those formed by human insulin. However, in its new position on the surface of the hexamer, the fatty acid chain affects the equilibria of the phenol-induced interconversions between the T(6), T(3)R(3), and R(6) allosteric states of the insulin hexamer. We conclude that insulin is an attractive model system for analyzing the diverse structural effects induced by lipidation of a compact globular protein.  相似文献   

12.
Zinc insulin hexamer has been shown to undergo a phenol-induced T6 to R6 conformational transition in solution. Our circular dichroic (CD) studies demonstrate that insulin undergoes pH-dependent conformational changes over the pH range of 6-10 in the T-state and in the R- state. In order to determine which specific amino acid residues may be responsible for these pH-dependent changes, a series of insulin analogs were utilized. In the T-state, the pH dependent CD changes monitored in the far UV region have a pK of 8.2 and appear to be related to the titration of the A1-Gly amino group. Using the near UV CD a second pH-dependent conformational change was detected with a pK of 7.5 in the T-state. 1H N.M.R. studies suggest that B5-His may be responsible for this conformational transition. In the presence of m-cresol (R-state), the pK value was found to be 6.9. During this titration, the increased ellipticity for the R-state is diminishing as pH decreases from pH 8 to 6, and no difference in ellipticity was observed at 255 nm between T- and R-states at pH 6. Therefore, this may be due to the transition from the R back to the T-state.  相似文献   

13.
The assembly of the insulin hexamer brings the six B13 glutamate side-chains at the centre into close proximity. Their mutual repulsion is unfavourable and zinc co-ordination to B10 histidine is necessary to stabilize the well known zinc-containing hexamers. Since B13 is always a carboxylic acid in all known sequences of hexamer forming insulins, it is likely to be important in the hormone's biology. The mutation of B13 Glu-->Gln leads to a stable zinc-free hexamer with somewhat reduced potency. The structures of the zinc-free B13 Gln hexamer and the 2Zn B13 insulin hexamer have been determined by X-ray analysis and refined with 2.5 A and 2.0 A diffraction data, respectively. Comparisons show that in 2Zn B13 Gln insulin, the hexamer structure (T6) is very like that of the native hormone. On the other hand, the zinc-free hexamer assumes a quaternary structure (T3/R3) seen in the native 4Zn insulin hexamer, and normally associated only with high chloride ion concentrations in the medium. The crystal structures show the B13 Gln side-chains only contact water in contrast to the B13 glutamate in 2Zn insulin. The solvation of the B13 Gln may be associated with this residue favouring helix at B1 to B8. The low potency of the B13 Gln insulin also suggests the residue influences the hormone's conformation.  相似文献   

14.
Insulin provides a model for the therapeutic application of protein engineering. A paradigm in molecular pharmacology was defined by design of rapid-acting insulin analogs for the prandial control of glycemia. Such analogs, a cornerstone of current diabetes regimens, exhibit accelerated subcutaneous absorption due to more rapid disassembly of oligomeric species relative to wild-type insulin. This strategy is limited by a molecular trade-off between accelerated disassembly and enhanced susceptibility to degradation. Here, we demonstrate that this trade-off may be circumvented by nonstandard mutagenesis. Our studies employed LysB28, ProB29-insulin (“lispro”) as a model prandial analog that is less thermodynamically stable and more susceptible to fibrillation than is wild-type insulin. We have discovered that substitution of an invariant tyrosine adjoining the engineered sites in lispro (TyrB26) by 3-iodo-Tyr (i) augments its thermodynamic stability (ΔΔGu 0.5 ±0.2 kcal/mol), (ii) delays onset of fibrillation (lag time on gentle agitation at 37 °C was prolonged by 4-fold), (iii) enhances affinity for the insulin receptor (1.5 ± 0.1-fold), and (iv) preserves biological activity in a rat model of diabetes mellitus. 1H NMR studies suggest that the bulky iodo-substituent packs within a nonpolar interchain crevice. Remarkably, the 3-iodo-TyrB26 modification stabilizes an oligomeric form of insulin pertinent to pharmaceutical formulation (the R6 zinc hexamer) but preserves rapid disassembly of the oligomeric form pertinent to subcutaneous absorption (T6 hexamer). By exploiting this allosteric switch, 3-iodo-TyrB26-lispro thus illustrates how a nonstandard amino acid substitution can mitigate the unfavorable biophysical properties of an engineered protein while retaining its advantages.  相似文献   

15.
The cobalt(II)-substituted proinsulin and insulin hexamers have been studied in solution via electronic absorption spectroscopy. Hexameric proinsulin is shown to undergo the phenol-induced T6 to R6 conformational transition in a manner analogous to that previously established for insulin. In the absence of coordinating anions, the coordination spheres of the Co(II) ions in the proinsulin and insulin R6 hexamers comprise identical pseudotetrahedral arrangements of 3 histidine residues and 1 hydroxide ion. At alkaline pH, the visible absorption spectrum of the phenol-induced R6 Co(II) center is strikingly similar to the distinctive spectrum of the alkaline form of Co(II)-carbonic anhydrase. Exogenous ligands may coordinate to the Co(II) ions of the R6 proinsulin and insulin hexamers via replacement of the hydroxide ion, forming pseudotetrahedral adducts possessing characteristic spectra. The binding affinity of such ligands is shown to be strongly pH-dependent. The data presented establish that, although the Co(II)-substituted proinsulin and insulin R6 hexamers lack enzyme-like activity, these species duplicate spectrochemical characteristics of the Co(II)-carbonic anhydrase active site that are believed to be important signatures of carbonic anhydrase catalytic function.  相似文献   

16.
M Brouwer  B Serigstad 《Biochemistry》1989,28(22):8819-8827
Hemocyanin of the horseshoe crab Limulus polyphemus is composed of 48 oxygen-binding subunits, which are arranged in eight hexameric building blocks. Allosteric interactions in this oligomeric protein have been examined by measurement of high-precision oxygen-equilibrium curves, using an automated Imai cell. Several models were compared in numerical analysis of the data. A number of conclusions can be drawn with confidence. (1) Oxygen binding by Limulus hemocyanin cannot satisfactorily be described by the two-state MWC model [Monod, J., Wyman, J., & Changeux, J.P. (1965) J. Mol. Biol. 12, 88-118] for allosteric transitions with either the hexamer or dodecamer as the allosteric unit. (2) Of the models tested, the data sets can be best described by an extended MWC model that allows for an equilibrium, within the 48-subunit ensemble, between cooperative hexamers and cooperative dodecamers. The model invokes T and R states for both hexamers (T6 and R6) and dodecamers (T12 and R12). Allosteric effectors modulate oxygen affinity and cooperativity by affecting the R to T equilibria within hexamers and dodecamers and by shifting the equilibria between hexamers and dodecamers. (3) The fitted model parameters show that under most conditions the intersubunit contacts within T-state hexamers are more constrained than those within T-state dodecamers. (4) The oxygen affinities of the hexameric and dodecameric R states are the same, but under all conditions examined the conformation of the fully oxygenated molecule is that of the dodecameric R state. (5) Between pH 7.4 and pH 8.5 the dodecameric T state has a higher affinity for oxygen than the hexameric T state, allowing for "T-state cooperativity".(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The addition of specific bulky hydrophobic groups to the insulin molecule provides it with affinity for circulating serum albumin and enables it to form soluble macromolecular complexes at the site of subcutaneous injection, thereby securing slow absorption of the insulin analogue into the blood stream and prolonging its half-life once there. N-Lithocholic acid acylated insulin [Lys(B29)-lithocholyl des-(B30) human insulin] has been crystallized and the structure determined by X-ray crystallography at 1.6 A resolution to explore the molecular basis of its assembly. The unit cell in the crystal consists of an insulin hexamer containing two zinc ions, with two m-cresol molecules bound at each dimer-dimer interface stabilizing an R(6) conformation. Six covalently bound lithocholyl groups are arranged symmetrically around the outside of the hexamer. These form specific van der Waals and hydrogen-bonding interactions at the interfaces between neighboring hexamers, possibly representing the kinds of interactions which occur in the soluble aggregates at the site of injection. Comparison with an equivalent nonderivatized native insulin hexamer shows that the addition of the lithocholyl group disrupts neither the important conformational features of the insulin molecule nor its hexamer-forming ability. Indeed, binding studies show that the affinity of N-lithocholyl insulin for the human insulin receptor is not significantly diminished.  相似文献   

18.
The two histidines of the insulin monomer play a vital role in the organization of insulin into insulin hexamers. The B10 histidines bind to zinc to form two-zinc insulin hexamer, and both the B5 and B10 histidines are implicated in the formation of four-zinc insulin hexamer. These two histidines are both accessible to solvent in the dimeric form of insulin, the predominant species present at pH 2–3. In the present work we report the first 500-MHz1H NMR studies of insulin. At this frequency all four proton resonances from the two histidines of each equivalent monomer are resolved. The resonances are assigned to the C(2)- and C(4)-imidazole protons of B5 His and B10 His employing Carr-Purcell pulse sequences to detect singlets and to observe approximateT 2 relaxation times. Zinc-free bovine insulin at pH 2.9 was examined at temperatures up to 60°C in acetate buffer and in urea of varying concentrations. The environments of B5 His in molecule I and molecule II of the dimer must be the same, with the same being true for B10 His, since a total of only four sharp resonances are seen. Our assignments for the two C(2) protons are consistent with those determined from recent studies of human (B5 Ala) insulin.  相似文献   

19.
Insulin hexamers: new conformations and applications   总被引:3,自引:0,他引:3  
Recent studies on the structural and chemical properties of insulin have shown that the insulin hexamer is an allosteric protein capable of adopting three distinct conformations, designated T6, T3R3 and R6. Although the physiological consequences of this allostery are not established, new applications for the insulin hexamer as a model system for the study of allostery and for the study of zinc enzymes and copper proteins are emerging.  相似文献   

20.
The crystal structure of insulin has been investigated in a variety of dimeric and hexameric assemblies. Interest in dynamics has been stimulated by conformational variability among crystal forms and evidence suggesting that the functional monomer undergoes a conformational change on receptor binding. Here, we employ Raman spectroscopy and Raman microscopy to investigate well-defined oligomeric species: monomeric and dimeric analogs in solution, native T(6) and R(6) hexamers in solution and corresponding polycrystalline samples. Remarkably, linewidths of Raman bands associated with the polypeptide backbone (amide I) exhibit progressive narrowing with successive self-assembly. Whereas dimerization damps fluctuations at an intermolecular beta-sheet, deconvolution of the amide I band indicates that formation of hexamers stabilizes both helical and non-helical elements. Although the structure of a monomer in solution resembles a crystallographic protomer, its encagement in a native assembly damps main-chain fluctuations. Further narrowing of a beta-sheet-specific amide I band is observed on reorganization of insulin in a cross-beta fibril. Enhanced flexibility of the native insulin monomer is in accord with molecular dynamics simulations. Such conformational fluctuations may initiate formation of an amyloidogenic nucleus and enable induced fit on receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号