首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three different types of β-d-galactosidase (EC 3.2.1.23) could be distinguished in rabbit tissues using electrophoretic procedures. (1) Acid β-d-galactosidase with a low mobility and maximal activity atpH 3–5 was found in the particulate fraction of various tissue homogenates. This enzyme hydrolyzed 4-methylumbelliferyl-d-galactoside, but no activity against other glycoside substrates could be demonstrated. The enzyme was inhibited by galactono-(1 → 4)-lactone. (2) Lactose-hydrolyzing β-d-galactosidase with an intermediate mobility was found only in juvenile small intestine. Most of the activity was found in the particulate fraction of the cell. The enzyme hydrolyzed several other synthetic glycoside substrates besides lactose. It was most active atpH 5–6 and strongly inhibited by glucono-(1 → 5)-lactone but not much affected by galactono-(1 → 4)-lactone. (3) Neutral β-d-galactosidase with a fast mobility and maximal activity atpH 6–8 was found in the soluble fraction of homogenates from liver, kidney, and small intestine. This enzyme also showed a broad substrate specificity; it possessed activity against aryl-β-d-glucoside, -fucoside, and -galactoside substrates but not against lactose. The enzyme was strongly inhibited by glucono-(1 → 5)-lactone and (less) by galactone-(1 → 4)-lactone. Neutral β-d-galactosidase and neutral β-d-glucosidase (EC 3.2.1.21) are probably identical enzymes in the rabbit. Individual variation, in both electrophoretic mobility and activity, was found for neutral β-d-galactosidase. Genetic analysis of the electrophoretic variants revealed that two alleles at an autosomal locus are responsible for this variation. This investigation was supported in part by Public Health Service Grant RR-00251 from the Division of Research Resources and by funds of the University of Utrecht.  相似文献   

2.
A novel transglycosylation reaction from sucrose to l-ascorbic acid by a recombinant sucrose phosphorylase from Bifidobacterium longum was used to produce a stable l-ascorbic acid derivative. The major product was detected by HPLC, and confirmed to be 2-O-α-d-glucopyranosyl-l-ascorbic acid by LC-MS/MS analysis.  相似文献   

3.
Penicillium ulaiense is a post-harvest pathogenic fungus that attacks citrus fruits. The objective of this work was to study this microorganism as an α-l-rhamnosidase producer and to characterize it from P. ulaiense. The enzyme under study is used for different applications in food and beverage industries. α-l-Rhamnosidase was produced in a stirred-batch reactor using rhamnose as the main carbon source. The kinetic parameters for the growth of the fungi and for the enzyme production were calculated from the experimental values. A method for partial purification, including (NH4)2SO4 precipitation, incubation at pH 12 and DEAE-sepharose chromatography yielded an enzyme with very low β-glucosidase activity. The pH and temperature optima were 5.0 and 60°C, respectively. The Michaelis–Menten constants for the hydrolysis of p-nitrophenyl-α-l-rhamnoside were V max = 26 ± 4 IU ml−1 and K m  = 11 ± 2 mM. The enzyme showed good thermostability up to 60°C and good operational stability in white wine. Co2+ affected positively the activity; EDTA, Mn2+, Mg2+, dithiotreitol and Cu2+ reduced the activity by different amounts, and Hg2+ completely inhibited the enzyme. The enzyme showed more activity on p-nitrophenyl-α-l-rhamnoside than on naringin. According to these results, this enzyme has potential for use in the food and pharmacy industries since P. ulaiense does not produce mycotoxins.  相似文献   

4.
Exogenously applied ABA-β-d-glucopyranosyl ester (ABA-GE) inhibited shoot growth of alfalfa (Medicago sativa L.), cress (Lepidium sativum L.), lettuce (Lactuca sativa L.), Digitaria sanguinalis L., timothy (Pheleum pratense L.) and ryegrass (Lolium multiflorum Lam.) seedlings at concentrations greater than 0.1 μM. The growth inhibitory activity of ABA-GE on these shoots was 26–40% of that of (+)-ABA. ABA-β-d-glucosidase activities in these seedlings were 11–31 nmol mg−1 protein min−1. These results suggests that exogenously applied ABA-GE may be absorbed by plant roots and hydrolyzed by ABA-β-d-glucosidase, and liberated free ABA may induce the growth inhibition in these plants. Thus, although ABA-GE had been thought to be physiologically inactive ABA conjugate, ABA-GE may have important physiological functions rather than an inactive conjugated ABA form.  相似文献   

5.
An open reading frame encoding a putative bi-functional β-d-xylosidase/α-l-arabinosidase (Sso3032) was identified on the genome sequence of Sulfolobus solfataricus P2, the predicted gene product showing high amino-acid sequence similarity to bacterial and eukaryal individual β-d-xylosidases and α-l-arabinosidases as well as bi-functional enzymes such as the protein from Thermoanaerobacter ethanolicus and barley. The sequence was PCR amplified from genomic DNA of S. solfataricus P2 and heterologous gene expression obtained in Escherichia coli, under optimal conditions for overproduction. Specific assays performed at 75°C revealed the presence in the transformed E. coli cell extracts of this archaeal activity involved in sugar hydrolysis and specific for both substrates. The recombinant protein was purified by thermal precipitation of the host proteins and ethanol fractionation and other properties, such as high thermal activity and thermostability could be determined. The protein showed a homo-tetrameric structure with a subunit of molecular mass of 82.0 kDa which was in perfect agreement with that deduced from the cloned gene. Northern blot analysis of the xarS gene indicates that it is specifically induced by xylan and repressed by monosaccharides like d-glucose and l-arabinose.  相似文献   

6.
The crystal structures of α-d-glucopyranosyl β-d-psicofuranoside and α-d-galactopyranosyl β-d-psicofuranoside were determined by a single-crystal X-ray diffraction analysis, refined to R1 = 0.0307 and 0.0438, respectively. Both disaccharides have a similar molecular structure, in which psicofuranose rings adopt an intermediate form between 4E and 4T3. Unique molecular packing of the disaccharides was found in crystals, with the molecules forming a layered structure stacked along the y-axis.  相似文献   

7.
In an attempt to elucidate the effect of metallic ions and EDTA on acidic α-d-glucosidase activity, we measured acidic α-d-glucosidase activity from either lymphocyte and muscle tissue homogenates or intact cells after incubation with metallic ions. The results showed that this enzyme activity was strongly inhibited by Ag+, Hg2+, and Fe3+ in either lymphocyte or muscle tissue homogenates. There was no effect of Zn2+, Cu2+, and Cd2+. However, intact cells, either lymphocyte or muscle cells, after incubation with Zn2+ for 1 or 2 hr, showed enhanced enzyme activity and suppression in the other metallic ion groups, especially in Ag+, Hg2+, and Fe3+. Since deficiency of this enzyme can cause type II glycogen storage disese (Pompe’s disease), the more we understand the character of this enzyme, the more we can improve our enzymatic therapy. This work was supported by Grant NSC75-0412-B075-41 from the National Science Council of the Republic of China.  相似文献   

8.
Summary The presence of an enzyme activity which hydrolyzes glycyl-d-aspartate was found in the homogenates of pig kidney cortex. The activity was inhibited by metal chelating agents and cilastatin, suggesting that the enzyme was a cilastatin-sensitive metallo-peptidase. Of the two hydrolysis products,d-aspartate was found to be less accumulated than glycine. The fate ofd-aspartate was, therefore, examined and the amino acid was found to be converted tol-aspartate,l-alanine and pyruvate, in the presence ofl-glutamate. Experiments with enzyme inhibitors suggested that the conversion involvedd-aspartate oxidase, aspartate aminotransferase and alanine aminotransferase as well as decarboxylation of oxaloacetate produced fromd-aspartate. All the results indicate that the enzymes in the pig kidney can liberate thed-aspartyl residue in the peptide and convert it to the compounds readily utilizable. The finding suggests a probable metabolic pathway of thed-aspartate-containing peptide.  相似文献   

9.
The gene, AbfAC26Sari, encoding an α-l-arabinofuranosidase from Anoxybacillus kestanbolensis AC26Sari, was isolated, cloned, sequenced, and characterizated. On the basis of amino acid sequence similarities, this 57-kDa enzyme could be assigned to family 51 of the glycosyl hydrolase classification system. Characterization of the purified recombinant α-l-arabinofuranosidase produced in Escherichia coli BL21 revealed that it is active at a broad pH range (pH 4.5 to 9.0) and at a broad temperature range (45–85°C) and it has an optimum pH of 5.5 and an optimum temperature of 65°C. Kinetic experiment at 65°C with p-nitrophenyl α-l-arabinofuranoside as a substrate gave a V max and K m values of 1,019 U/mg and 0.139 mM, respectively. The enzyme had no apparent requirement of metal ions for activity, and its activity was strongly inhibited by 1 mM Cu2+ and Hg2+. The recombinant arabinofuranosidase released l-arabinose from arabinan, arabinoxylan, oat spelt xylan, arabinobiose, arabinotriose, arabinotetraose, and arabinopentaose. Endoarabinanase activity was not detected. These findings suggest that AbfAC26Sari is an exo-acting enzyme.  相似文献   

10.
In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of l-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce d-lactic acid. The modification involved expression of fermentative d-lactate dehydrogenase (d-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in l-lactate dehydrogenase (l-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum ΔldhA/pCRB201 and C. glutamicum ΔldhA/pCRB204, respectively. The productivity of C. glutamicum ΔldhA/pCRB204 was fivefold higher than that of C. glutamicum ΔldhA/pCRB201. By using C. glutamicum ΔldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l−1) of d-lactic acid of greater than 99.9% optical purity was produced within 30 h.  相似文献   

11.
Corynebacterium glutamicum R was metabolically engineered to broaden its sugar utilization range to d-xylose and d-cellobiose contained in lignocellulose hydrolysates. The resultant recombinants expressed Escherichia coli xylA and xylB genes, encoding d-xylose isomerase and xylulokinase, respectively, for d-xylose utilization and expressed C. glutamicum R bglF 317A and bglA genes, encoding phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) β-glucoside-specific enzyme IIBCA component and phospho-β-glucosidase, respectively, for d-cellobiose utilization. The genes were fused to the non-essential genomic regions distributed around the C. glutamicum R chromosome and were under the control of their respective constitutive promoter trc and tac that permitted their expression even in the presence of d-glucose. The enzyme activities of resulting recombinants increased with the increase in the number of respective integrated genes. Maximal sugar utilization was realized with strain X5C1 harboring five xylA–xylB clusters and one bglF 317A bglA cluster. In both d-cellobiose and d-xylose utilization, the sugar consumption rates by genomic DNA-integrated strain were faster than those by plasmid-bearing strain, respectively. In mineral medium containing 40 g l−1 d-glucose, 20 g l−1 d-xylose, and 10 g l−1 d-cellobiose, strain X5C1 simultaneously and completely consumed these sugars within 12 h and produced predominantly lactic and succinic acids under growth-arrested conditions.  相似文献   

12.
S. Asakura  Dr. R. Konno 《Amino acids》1997,12(3-4):213-223
Summary Urine of ddY/DAO mice lackingd-amino-acid oxidase contained 5.7 times more serine than that of normal ddY/DAO+ mice. Most of the serine wasd-isomer. The origin of thisd-serine was examined. Oral administration of 0.02% amoxicillin and 0.004% minocycline to the ddY/ DAO- mice for 7 days did not reduce the urinaryd-serine, indicating that thed-serine was not of intestinal bacterial origin. When the mouse diet was changed to one with different compositions, the urinaryd-serine was considerably reduced. Furthermore, starvation of the ddY/DAO- mice for 24 hours reduced the urinaryd-serine to 33% of the original level. These results indicate that most of the urinaryd-serine comes from the diet. However, the urine of the starved ddY/DAO- mice still contained 4.6 times mored-serine than that of the ddY/DAO+ mice, suggesting a part of the D-serine have an endogenous origin.  相似文献   

13.
By enzymatic β-d-galactosylation of d-xylose a mixture of 4-, 3-, and (1, 4, and 7, respectively) was obtained in 50% isolated yield. Disaccharides 1, 4, and 7 are substrates of intestinal lactase isolated from lamb small intestine with Km values of 250.0, 4.5, and 14.0 mM, respectively. The mixture was used to monitor the normal decline in lactase activity in rats that takes place after weaning. The data obtained by this method correlated with the levels of intestinal lactase activity in the same animals after being sacrificed.  相似文献   

14.
In hippocampal slices arachidonic acid released after NMDA post-synaptic receptor activation is thought to act as a retrograde trans-synaptic messenger which facilitates the pre-synaptic release of L-glutamate to be involved in the expression of long-term synaptic potentiation (LTP). We measured the mass amount of arachidonic acid released from hippocampal slices incubated under conditions which maintain the electrophysiological responsiveness of the slice. Melittin released arachidonic, oleic and docosahexaenoic acids by phospholipase A2 activation but not palmitic or stearic acids. Of greater interestl-glutamate, N-methyl-d-aspartate and incubation conditions known to induce LTP selectively and rapidly increased the release of archidonic acid in amounts over basal levels of 200–300 ng/mg protein. This is the first direct determination of the mass amount of arachidonic acid released following NMDA receptor activation in the hippocampus.Special issue dedicated to Dr. Louis Sokoloff.  相似文献   

15.
Barley endosperm begins development as a syncytium where numerous nuclei line the perimeter of a large vacuolated central cell. Between 3 and 6 days after pollination (DAP) the multinucleate syncytium is cellularized by the centripetal synthesis of cell walls at the interfaces of nuclear cytoplasmic domains between individual nuclei. Here we report the temporal and spatial appearance of key polysaccharides in the cell walls of early developing endosperm of barley, prior to aleurone differentiation. Flowering spikes of barley plants grown under controlled glasshouse conditions were hand-pollinated and the developing grains collected from 3 to 8 DAP. Barley endosperm development was followed at the light and electron microscope levels with monoclonal antibodies specific for (1→3)-β-d-glucan (callose), (1→3,1→4)-β-d-glucan, hetero-(1→4)-β-d-mannans, arabino-(1→4)-β-d-xylans, arabinogalactan-proteins (AGPs) and with the enzyme, cellobiohydrolase II, to detect (1→4)-β-d-glucan (cellulose). Callose and cellulose were present in the first formed cell walls between 3 and 4 DAP. However, the presence of callose in the endosperm walls was transient and at 6 DAP was only detected in collars surrounding plasmodesmata. (1→3,1→4)-β-d-Glucan was not deposited in the developing cell walls until approximately 5 DAP and hetero-(1→4)-β-d-mannans followed at 6 DAP. Deposition of AGPs and arabinoxylan in the wall began at 7 and 8 DAP, respectively. For arabinoxylans, there is a possibility that they are deposited earlier in a highly substituted form that is inaccessible to the antibody. Arabinoxylan and heteromannan were also detected in Golgi and associated vesicles in the cytoplasm. In contrast, (1→3,1→4)-β-d-glucan was not detected in the cytoplasm in endosperm cells; similar results were obtained for coleoptile and suspension cultured cells.  相似文献   

16.
N-Acetyl-L-glutamate (NAG), the activator of mitochondrial carbamoyl phosphate synthetase (CPS), is demonstrated by several methods, including a new HPLC assay, in the brain of mammals and of chicken. The brain levels of NAG are 200–300 times lower than the levels of N-acetyl-l-aspartate (NAA), and are similar to the levels of NAG in rat liver. The NAG levels in chicken liver are very low. Although NAG is mitochondrial in the liver, it is cytosolic in brain. Using enzyme activity and immuno assays we did not detect CPS in brain (detection limit, 12.5 g/g brain), excluding that brain NAG is involved in citrullinogenesis. The regional distribution of brain NAG differs from that of NAA and resembles that of N-acetyl-l-aspartyl-l-glutamate (NAAG), suggesting that NAG and NAAG are related. NAG might be involved in the modulation of NAAG degradation.Special issue dedicated to Dr. Santiago Grisolía  相似文献   

17.
The inhibition of inclusion body formation in Escherichia coli by the addition of alpha-D: -glucopyranoside or D: -fucose after induction improved the purification yield of soluble recombinant interferon-alpha. When D: -fucose was added after induction, more soluble 6xHis-tagged interferon-alpha could be purified compared to when methyl alpha-D: -glucopyranoside was added. It was shown that, on the basis of 1 mg dry cell weight, 16.6 mug of soluble 6xHis-tagged interferon-alpha was purified when D: -fucose was added after induction and 6 ml nickel-chelated agarose gel column was used. This was about 15 times greater than when induction only was performed and 1 ml nickel-chelated agarose gel was used.  相似文献   

18.
The gene encoding an α-l-arabinofuranosidase from Geobacillus caldoxylolyticus TK4, AbfATK4, was isolated, cloned, and sequenced. The deduced protein had a molecular mass of about 58 kDa, and analysis of its amino acid sequence revealed significant homology and conservation of different catalytic residues with α-l-arabinofuranosidases belonging to family 51 of the glycoside hydrolases. A histidine tag was introduced at the N-terminal end of AbfATK4, and the recombinant protein was expressed in Escherichia coli BL21, under control of isopropyl-β-D-thiogalactopyranoside-inducible T7 promoter. The enzyme was purified by nickel affinity chromatography. The molecular mass of the native protein, as determined by gel filtration, was about 236 kDa, suggesting a homotetrameric structure. AbfATK4 was active at a broad pH range (pH 5.0–10.0) and at a broad temperature range (40–85°C), and it had an optimum pH of 6.0 and an optimum temperature of 75–80°C. The enzyme was more thermostable than previously described arabinofuranosidases and did not lose any activity after 48 h incubation at 70°C. The protein exhibited a high level of activity with p-nitrophenyl-α-l-arabinofuranoside, with apparent K m and V max values of 0.17 mM and 588.2 U/mg, respectively. AbfATK4 also exhibited a low level of activity with p-nitrophenyl-β-d-xylopyranoside, with apparent K m and V max values of 1.57 mM and 151.5 U/mg, respectively. AbfATK4 released l-arabinose only from arabinan and arabinooligosaccharides. No endoarabinanase activity was detected. These findings suggest that AbfATK4 is an exo-acting enzyme.  相似文献   

19.
A high-performance liquid chromatographic procedure has been developed for the determination of [d-Ala2, d-Leu5]enkephalin (DADLE) and the fragments containing d-leucine in rat blood. The procedure was applied to the determination of blood levels of [3H-d-Leu5]DADLE and the C-terminal fragments after intravenous administration of [3H-d-Leu5]DADLE to a rat. Unlabelled DADLE and the C-terminal fragments were spiked as carriers to rat blood samples and the blood samples were extracted with 1% trifluoroacetic acid in methanol. The recoveries from rat blood were quantitative for all compounds. DADLE and the C-terminal four fragments were well separated on a reversed-phase column with gradient elution using a mobile phase composed of 0.14% HClO4 and acetonitrile.  相似文献   

20.
Four precursors (l-phenylalanine, l-tryptophan, cinnamic acid and emodin) and one signal elicitor (methyl jasmonate, MeJA) were added to liquid cultures of Hypericum perforatum L. to study their effect on production of hyperforin and hypericins (pseudohypericin and hypericin). The addition of l-phenylalanine (75 to 100 mg l−1) enhanced production of hypericins, but hyperforin levels were decreased. Hypericin, pseudohypericin and hyperforin concentrations were all decreased when l-tryptophan (25 to 100 mg l−1) was added to the medium. However, addition of l-tryptophan (50 mg l−1) with MeJA (100 μM) stimulated hyperforin production significantly (1.81-fold) and resulted in an increased biomass. Cinnamic acid (25, 50 mg l−1) and emodin (1.0 to 10.0 mg l−1) each enhanced hyperforin accumulation in H. perforatum, but did not affect accumulation of hypericins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号