首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The existence of haplotype blocks transmitted from parents to offspring has been suggested recently. This has created an interest in the inference of the block structure and length. The motivation is that haplotype blocks that are characterized well will make it relatively easier to quickly map all the genes carrying human diseases. To study the inference of haplotype block systematically, we propose a statistical framework. In this framework, the optimal haplotype block partitioning is formulated as the problem of statistical model selection; missing data can be handled in a standard statistical way; population strata can be implemented; block structure inference/hypothesis testing can be performed; prior knowledge, if present, can be incorporated to perform a Bayesian inference. The algorithm is linear in the number of loci, instead of NP-hard for many such algorithms. We illustrate the applications of our method to both simulated and real data sets.  相似文献   

2.
3.
4.
Understanding the inherited nature of how biological processes dynamically change over time and exhibit intra- and inter-individual variability, due to the different responses to environmental stimuli and when interacting with other processes, has been a major focus of systems biology. The rise of single-cell fluorescent microscopy has enabled the study of those phenomena. The analysis of single-cell data with mechanistic models offers an invaluable tool to describe dynamic cellular processes and to rationalise cell-to-cell variability within the population. However, extracting mechanistic information from single-cell data has proven difficult. This requires statistical methods to infer unknown model parameters from dynamic, multi-individual data accounting for heterogeneity caused by both intrinsic (e.g. variations in chemical reactions) and extrinsic (e.g. variability in protein concentrations) noise. Although several inference methods exist, the availability of efficient, general and accessible methods that facilitate modelling of single-cell data, remains lacking. Here we present a scalable and flexible framework for Bayesian inference in state-space mixed-effects single-cell models with stochastic dynamic. Our approach infers model parameters when intrinsic noise is modelled by either exact or approximate stochastic simulators, and when extrinsic noise is modelled by either time-varying, or time-constant parameters that vary between cells. We demonstrate the relevance of our approach by studying how cell-to-cell variation in carbon source utilisation affects heterogeneity in the budding yeast Saccharomyces cerevisiae SNF1 nutrient sensing pathway. We identify hexokinase activity as a source of extrinsic noise and deduce that sugar availability dictates cell-to-cell variability.  相似文献   

5.
Ecological diffusion is a theory that can be used to understand and forecast spatio‐temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white‐tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression‐based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.  相似文献   

6.
Yun-Xin Fu 《Genetics》2013,194(4):927-936
Most studies of mutation rates implicitly assume that they remain constant throughout development of the germline. However, researchers recently used a novel statistical framework to reveal that mutation rates differ dramatically during sperm development in Drosophila melanogaster. Here a general framework is described for the inference of germline mutation patterns, generated from either mutation screening experiments or DNA sequence polymorphism data, that enables analysis of more than two mutations per family. The inference is made more rigorous and flexible by providing a better approximation of the probabilities of patterns of mutations and an improved coalescent algorithm within a single host with realistic assumptions. The properties of the inference framework, both the estimation and the hypothesis testing, were investigated by simulation. The refined inference framework is shown to provide (1) nearly unbiased maximum-likelihood estimates of mutation rates and (2) robust hypothesis testing using the standard asymptotic distribution of the likelihood-ratio tests. It is readily applicable to data sets in which multiple mutations in the same family are common.  相似文献   

7.
Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named “posterior parameter ensemble”. We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor.  相似文献   

8.
Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level metabolic interactions, BiomeNet applies a mixed-membership modelling framework to enzyme abundance information. The basic idea is that the mixture components of the model (metabolic reactions, subnetworks, and networks) are shared across all groups (microbiome samples), but the mixture proportions vary from group to group. Through this framework, the model can capture nested structures within the data. BiomeNet is unique in modeling each metagenome sample as a mixture of complex metabolic systems (metabosystems). The metabosystems are composed of mixtures of tightly connected metabolic subnetworks. BiomeNet differs from other unsupervised methods by allowing researchers to discriminate groups of samples through the metabolic patterns it discovers in the data, and by providing a framework for interpreting them. We describe a collapsed Gibbs sampler for inference of the mixture weights under BiomeNet, and we use simulation to validate the inference algorithm. Application of BiomeNet to human gut metagenomes revealed a metabosystem with greater prevalence among inflammatory bowel disease (IBD) patients. Based on the discriminatory subnetworks for this metabosystem, we inferred that the community is likely to be closely associated with the human gut epithelium, resistant to dietary interventions, and interfere with human uptake of an antioxidant connected to IBD. Because this metabosystem has a greater capacity to exploit host-associated glycans, we speculate that IBD-associated communities might arise from opportunist growth of bacteria that can circumvent the host''s nutrient-based mechanism for bacterial partner selection.  相似文献   

9.
Bayesian inference allows the transparent communication and systematic updating of model uncertainty as new data become available. When applied to material flow analysis (MFA), however, Bayesian inference is undermined by the difficulty of defining proper priors for the MFA parameters and quantifying the noise in the collected data. We start to address these issues by first deriving and implementing an expert elicitation procedure suitable for generating MFA parameter priors. Second, we propose to learn the data noise concurrent with the parametric uncertainty. These methods are demonstrated using a case study on the 2012 US steel flow. Eight experts are interviewed to elicit distributions on steel flow uncertainty from raw materials to intermediate goods. The experts' distributions are combined and weighted according to the expertise demonstrated in response to seeding questions. These aggregated distributions form our model parameters' informative priors. Sensible, weakly informative priors are adopted for learning the data noise. Bayesian inference is then performed to update the parametric and data noise uncertainty given MFA data collected from the United States Geological Survey and the World Steel Association. The results show a reduction in MFA parametric uncertainty when incorporating the collected data. Only a modest reduction in data noise uncertainty was observed using 2012 data; however, greater reductions were achieved when using data from multiple years in the inference. These methods generate transparent MFA and data noise uncertainties learned from data rather than pre-assumed data noise levels, providing a more robust basis for decision-making that affects the system.  相似文献   

10.
16S ribosomal RNA (rRNA) gene and other environmental sequencing techniques provide snapshots of microbial communities, revealing phylogeny and the abundances of microbial populations across diverse ecosystems. While changes in microbial community structure are demonstrably associated with certain environmental conditions (from metabolic and immunological health in mammals to ecological stability in soils and oceans), identification of underlying mechanisms requires new statistical tools, as these datasets present several technical challenges. First, the abundances of microbial operational taxonomic units (OTUs) from amplicon-based datasets are compositional. Counts are normalized to the total number of counts in the sample. Thus, microbial abundances are not independent, and traditional statistical metrics (e.g., correlation) for the detection of OTU-OTU relationships can lead to spurious results. Secondly, microbial sequencing-based studies typically measure hundreds of OTUs on only tens to hundreds of samples; thus, inference of OTU-OTU association networks is severely under-powered, and additional information (or assumptions) are required for accurate inference. Here, we present SPIEC-EASI (SParse InversE Covariance Estimation for Ecological Association Inference), a statistical method for the inference of microbial ecological networks from amplicon sequencing datasets that addresses both of these issues. SPIEC-EASI combines data transformations developed for compositional data analysis with a graphical model inference framework that assumes the underlying ecological association network is sparse. To reconstruct the network, SPIEC-EASI relies on algorithms for sparse neighborhood and inverse covariance selection. To provide a synthetic benchmark in the absence of an experimentally validated gold-standard network, SPIEC-EASI is accompanied by a set of computational tools to generate OTU count data from a set of diverse underlying network topologies. SPIEC-EASI outperforms state-of-the-art methods to recover edges and network properties on synthetic data under a variety of scenarios. SPIEC-EASI also reproducibly predicts previously unknown microbial associations using data from the American Gut project.  相似文献   

11.
12.
13.
Phylodynamics - the field aiming to quantitatively integrate the ecological and evolutionary dynamics of rapidly evolving populations like those of RNA viruses - increasingly relies upon coalescent approaches to infer past population dynamics from reconstructed genealogies. As sequence data have become more abundant, these approaches are beginning to be used on populations undergoing rapid and rather complex dynamics. In such cases, the simple demographic models that current phylodynamic methods employ can be limiting. First, these models are not ideal for yielding biological insight into the processes that drive the dynamics of the populations of interest. Second, these models differ in form from mechanistic and often stochastic population dynamic models that are currently widely used when fitting models to time series data. As such, their use does not allow for both genealogical data and time series data to be considered in tandem when conducting inference. Here, we present a flexible statistical framework for phylodynamic inference that goes beyond these current limitations. The framework we present employs a recently developed method known as particle MCMC to fit stochastic, nonlinear mechanistic models for complex population dynamics to gene genealogies and time series data in a Bayesian framework. We demonstrate our approach using a nonlinear Susceptible-Infected-Recovered (SIR) model for the transmission dynamics of an infectious disease and show through simulations that it provides accurate estimates of past disease dynamics and key epidemiological parameters from genealogies with or without accompanying time series data.  相似文献   

14.
In problems with missing or latent data, a standard approach is to first impute the unobserved data, then perform all statistical analyses on the completed dataset--corresponding to the observed data and imputed unobserved data--using standard procedures for complete-data inference. Here, we extend this approach to model checking by demonstrating the advantages of the use of completed-data model diagnostics on imputed completed datasets. The approach is set in the theoretical framework of Bayesian posterior predictive checks (but, as with missing-data imputation, our methods of missing-data model checking can also be interpreted as "predictive inference" in a non-Bayesian context). We consider the graphical diagnostics within this framework. Advantages of the completed-data approach include: (1) One can often check model fit in terms of quantities that are of key substantive interest in a natural way, which is not always possible using observed data alone. (2) In problems with missing data, checks may be devised that do not require to model the missingness or inclusion mechanism; the latter is useful for the analysis of ignorable but unknown data collection mechanisms, such as are often assumed in the analysis of sample surveys and observational studies. (3) In many problems with latent data, it is possible to check qualitative features of the model (for example, independence of two variables) that can be naturally formalized with the help of the latent data. We illustrate with several applied examples.  相似文献   

15.
Implicit and explicit use of expert knowledge to inform ecological analyses is becoming increasingly common because it often represents the sole source of information in many circumstances. Thus, there is a need to develop statistical methods that explicitly incorporate expert knowledge, and can successfully leverage this information while properly accounting for associated uncertainty during analysis. Studies of cause‐specific mortality provide an example of implicit use of expert knowledge when causes‐of‐death are uncertain and assigned based on the observer's knowledge of the most likely cause. To explicitly incorporate this use of expert knowledge and the associated uncertainty, we developed a statistical model for estimating cause‐specific mortality using a data augmentation approach within a Bayesian hierarchical framework. Specifically, for each mortality event, we elicited the observer's belief of cause‐of‐death by having them specify the probability that the death was due to each potential cause. These probabilities were then used as prior predictive values within our framework. This hierarchical framework permitted a simple and rigorous estimation method that was easily modified to include covariate effects and regularizing terms. Although applied to survival analysis, this method can be extended to any event‐time analysis with multiple event types, for which there is uncertainty regarding the true outcome. We conducted simulations to determine how our framework compared to traditional approaches that use expert knowledge implicitly and assume that cause‐of‐death is specified accurately. Simulation results supported the inclusion of observer uncertainty in cause‐of‐death assignment in modeling of cause‐specific mortality to improve model performance and inference. Finally, we applied the statistical model we developed and a traditional method to cause‐specific survival data for white‐tailed deer, and compared results. We demonstrate that model selection results changed between the two approaches, and incorporating observer knowledge in cause‐of‐death increased the variability associated with parameter estimates when compared to the traditional approach. These differences between the two approaches can impact reported results, and therefore, it is critical to explicitly incorporate expert knowledge in statistical methods to ensure rigorous inference.  相似文献   

16.
17.
D B Rubin 《Biometrics》1991,47(4):1213-1234
Causal inference in an important topic and one that is now attracting serious attention of statisticians. Although there exist recent discussions concerning the general definition of causal effects and a substantial literature on specific techniques for the analysis of data in randomized and nonrandomized studies, there has been relatively little discussion of modes of statistical inference for causal effects. This presentation briefly describes and contrasts four basic modes of statistical inference for causal effects, emphasizes the common underlying causal framework with a posited assignment mechanism, and describes practical implications in the context of an example involving the effects of switching from a name-band to a generic drug. A fundamental conclusion is that in such nonrandomized studies, sensitivity of inference to the assignment mechanism is the dominant issue, and it cannot be avoided by changing modes of inference, for instance, by changing from randomization-based to Bayesian methods.  相似文献   

18.
Nested clade phylogeographical analysis (NCPA) has become a common tool in intraspecific phylogeography. To evaluate the validity of its inferences, NCPA was applied to actual data sets with 150 strong a priori expectations, the majority of which had not been analysed previously by NCPA. NCPA did well overall, but it sometimes failed to detect an expected event and less commonly resulted in a false positive. An examination of these errors suggested some alterations in the NCPA inference key, and these modifications reduce the incidence of false positives at the cost of a slight reduction in power. Moreover, NCPA does equally well in inferring events regardless of the presence or absence of other, unrelated events. A reanalysis of some recent computer simulations that are seemingly discordant with these results revealed that NCPA performed appropriately in these simulated samples and was not prone to a high rate of false positives under sampling assumptions that typify real data sets. NCPA makes a posteriori use of an explicit inference key for biological interpretation after statistical hypothesis testing. Alternatives to NCPA that claim that biological inference emerges directly from statistical testing are shown in fact to use an a priori inference key, albeit implicitly. It is argued that the a priori and a posteriori approaches to intraspecific phylogeography are complementary, not contradictory. Finally, cross-validation using multiple DNA regions is shown to be a powerful method of minimizing inference errors. A likelihood ratio hypothesis testing framework has been developed that allows testing of phylogeographical hypotheses, extends NCPA to testing specific hypotheses not within the formal inference key (such as the out-of-Africa replacement hypothesis of recent human evolution) and integrates intra- and interspecific phylogeographical inference.  相似文献   

19.
Statistical analysis of microbial genomic data within epidemiological cohort studies holds the promise to assess the influence of environmental exposures on both the host and the host-associated microbiome. However, the observational character of prospective cohort data and the intricate characteristics of microbiome data make it challenging to discover causal associations between environment and microbiome. Here, we introduce a causal inference framework based on the Rubin Causal Model that can help scientists to investigate such environment-host microbiome relationships, to capitalize on existing, possibly powerful, test statistics, and test plausible sharp null hypotheses. Using data from the German KORA cohort study, we illustrate our framework by designing two hypothetical randomized experiments with interventions of (i) air pollution reduction and (ii) smoking prevention. We study the effects of these interventions on the human gut microbiome by testing shifts in microbial diversity, changes in individual microbial abundances, and microbial network wiring between groups of matched subjects via randomization-based inference. In the smoking prevention scenario, we identify a small interconnected group of taxa worth further scrutiny, including Christensenellaceae and Ruminococcaceae genera, that have been previously associated with blood metabolite changes. These findings demonstrate that our framework may uncover potentially causal links between environmental exposure and the gut microbiome from observational data. We anticipate the present statistical framework to be a good starting point for further discoveries on the role of the gut microbiome in environmental health.  相似文献   

20.
Complex biological dynamics often generate sequences of discrete events which can be described as a Markov process. The order of the underlying Markovian stochastic process is fundamental for characterizing statistical dependencies within sequences. As an example for this class of biological systems, we investigate the Markov order of sequences of microsaccadic eye movements from human observers. We calculate the integrated likelihood of a given sequence for various orders of the Markov process and use this in a Bayesian framework for statistical inference on the Markov order. Our analysis shows that data from most participants are best explained by a first-order Markov process. This is compatible with recent findings of a statistical coupling of subsequent microsaccade orientations. Our method might prove to be useful for a broad class of biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号