首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The metazoan mitochondrial DNA helicase is an integral part of the minimal mitochondrial replisome. It exhibits strong sequence homology with the bacteriophage T7 gene 4 protein primase-helicase (T7 gp4). Both proteins contain distinct N- and C-terminal domains separated by a flexible linker. The C-terminal domain catalyzes its characteristic DNA-dependent NTPase activity, and can unwind duplex DNA substrates independently of the N-terminal domain. Whereas the N-terminal domain in T7 gp4 contains a DNA primase activity, this function is lost in metazoan mtDNA helicase. Thus, although the functions of the C-terminal domain and the linker are partially understood, the role of the N-terminal region in the metazoan replicative mtDNA helicase remains elusive. Here, we show that the N-terminal domain of Drosophila melanogaster mtDNA helicase coordinates iron in a 2Fe-2S cluster that enhances protein stability in vitro. The N-terminal domain binds the cluster through conserved cysteine residues (Cys68, Cys71, Cys102, and Cys105) that are responsible for coordinating zinc in T7 gp4. Moreover, we show that the N-terminal domain binds both single- and double-stranded DNA oligomers, with an apparent Kd of ∼120 nm. These findings suggest a possible role for the N-terminal domain of metazoan mtDNA helicase in recruiting and binding DNA at the replication fork.  相似文献   

3.
Background information. The nuclear gene hSUV3 (human SUV3) encodes an ATP‐dependent DNA/RNA helicase. In the yeast Saccharomyces cerevisiae the orthologous Suv3 protein is localized in mitochondria, and is a subunit of the degradosome complex which regulates RNA surveillance and turnover. In contrast, the functions of human SUV3 are not known to date. Results. In the present study, we show that a fraction of human SUV3 helicase is localized in the nucleus. Using small interfering RNA gene silencing in HeLa cells, we demonstrate that down‐regulation of hSUV3 results in cell cycle perturbations and in apoptosis, which is both AIF‐ and caspase‐dependent, and proceeds with the induction of p53. Conclusions. In addition to its mitochondrial localization, human SUV3 plays an important role in the nucleus and is probably involved in chromatin maintenance.  相似文献   

4.
The intra-S phase checkpoint protein complex Tof1/Csm3 of Saccharomyces cerevisiae antagonizes Rrm3 helicase to modulate replication fork arrest not only at the replication termini of rDNA but also at strong nonhistone protein binding sites throughout the genome. We investigated whether these checkpoint proteins acted either antagonistically or synergistically with Rrm3 in mediating other important functions such as maintenance of genome stability. High retromobility of a normally quiescent retrovirus-like transposable element Ty1 of S. cerevisiae is a form of genome instability, because the transposition events induce mutations. We measured the transposition of Ty1 in various genetic backgrounds and discovered that Tof1 suppressed excessive retromobility in collaboration with either Rrm3 or the F-box protein Dia2. Although both Rrm3 and Dia2 are believed to facilitate fork movement, fork stalling at DNA-protein complexes did not appear to be a major contributor to enhancement of retromobility. Absence of the aforementioned proteins either individually or in pair-wise combinations caused karyotype changes as revealed by the altered migrations of the individual chromosomes in pulsed field gels. The mobility changes were RNase H-resistant and therefore, unlikely to have been caused by extensive R loop formation. These mutations also resulted in alterations of telomere lengths. However, the latter changes could not fully account for the magnitude of the observed karyotypic alterations. We conclude that unlike other checkpoint proteins that are known to be required for elevated retromobility, Tof1 suppressed high frequency retrotransposition and maintained karyotype stability in collaboration with the aforementioned proteins.  相似文献   

5.
Kinetoplast DNA (kDNA), the mitochondrial genome of trypanosomatids, consists of several thousand topologically interlocked DNA circles. Mitochondrial histone H1-like proteins were implicated in the condensation of kDNA into a nucleoid structure in the mitochondrial matrix. However, the mechanism that remodels kDNA, promoting its accessibility to the replication machinery, has not yet been described. Analyses, using yeast two hybrid system, co-immunoprecipitation, and protein-protein cross-linking, revealed specific protein-protein interactions between the kDNA replication initiator protein universal minicircle sequence-binding protein (UMSBP) and two mitochondrial histone H1-like proteins. Fluorescence and electron microscopy, as well as biochemical analyses, demonstrated that these protein-protein interactions result in the decondensation of kDNA. UMSBP-mediated decondensation rendered the kDNA network accessible to topological decatenation by topoisomerase II, yielding free kDNA minicircle monomers. Hence, UMSBP has the potential capacity to function in vivo in the activation of the prereplication release of minicircles from the network, a key step in kDNA replication, which precedes and enables its replication initiation. These observations demonstrate the prereplication remodeling of a condensed mitochondrial DNA, which is mediated via specific interactions of histone-like proteins with a replication initiator, rather than through their posttranslational covalent modifications.  相似文献   

6.
It is known that mitochondrial DNA (mtDNA) replication is independent of the cell cycle. Even in post-mitotic cells in which nuclear DNA replication has ceased, mtDNA is believed to still be replicating. Here, we investigated the turnover rate of mtDNA in primary rat hepatocytes, which are quiescent cells. Southwestern blot analysis using 5-bromo-2'-deoxyuridine (BrdU) was employed to estimate the activity of full-length mtDNA replication and to determine efficient doses of replication inhibitors. Southern blot analysis showed that a two-day treatment with 20mM 2',3'-dideoxycytidine and 0.2mug/ml ethidium bromide caused a 37% reduction in the amount of mtDNA, indicating that the hepatocytes had a considerably high rate of turnover of mtDNA. Further, pulse-chase analysis using Southwestern analysis showed that the amount of newly synthesized mtDNA labeled with BrdU declined to 60% of the basal level within two days. Because the rate of reduction of the new mtDNA was very similar to the overall turnover rate described above, it appears that degrading mtDNA molecules were randomly chosen. Thus, we demonstrated that there is highly active and random turnover of mtDNA in hepatocytes.  相似文献   

7.
8.
The Saccharomyces cerevisiae Uls1 belongs to the Swi2/Snf2 family of DNA-dependent ATPases and a new protein family of SUMO-targeted ubiquitin ligases. Here we show that Uls1 is implicated in DNA repair independently of the replication stress response pathways mediated by the endonucleases Mus81 and Yen1 and the helicases Mph1 and Srs2. Uls1 works together with Sgs1 and we demonstrate that the attenuation of replication stress-related defects in sgs1Δ by deletion of ULS1 depends on a functional of Rad51 recombinase and post-replication repair pathway mediated by Rad18 and Rad5, but not on the translesion polymerase, Rev3. The higher resistance of sgs1Δ uls1Δ mutants to genotoxic stress compared to single sgs1Δ cells is not the result of decreased formation or accelerated resolution of recombination-dependent DNA structures. Instead, deletion of ULS1 restores stability of the rDNA region in sgs1Δ cells. Our data suggest that Uls1 may contribute to genomic stability during DNA synthesis and channel the repair of replication lesions into the Sgs1-dependent pathway, with DNA translocase and SUMO binding activities of Uls1 as well as a RING domain being essential for its functions in replication stress response.  相似文献   

9.
The repair of reactive oxygen species-induced base lesions and single strand breaks (SSBs) in the nuclear genome via the base excision (BER) and SSB repair (SSBR) pathways, respectively, is well characterize, and important for maintaining genomic integrity. However, the role of mitochondrial (mt) BER and SSBR proteins in mt genome maintenance is not completely clear. Here we show the presence of the oxidized base-specific DNA glycosylase Nei-like 2 (NEIL2) and the DNA end-processing enzyme polynucleotide kinase 3'-phosphatase (PNKP) in purified human mitochondrial extracts (MEs). Confocal microscopy revealed co-localization of PNKP and NEIL2 with the mitochondrion-specific protein cytochrome c oxidase subunit 2 (MT-CO2). Further, chromatin immunoprecipitation analysis showed association of NEIL2 and PNKP with the mitochondrial genes MT-CO2 and MT-CO3 (cytochrome c oxidase subunit 3); importantly, both enzymes also associated with the mitochondrion-specific DNA polymerase γ. In cell association of NEIL2 and PNKP with polymerase γ was further confirmed by proximity ligation assays. PNKP-depleted ME showed a significant decrease in both BER and SSBR activities, and PNKP was found to be the major 3'-phosphatase in human ME. Furthermore, individual depletion of NEIL2 and PNKP in human HEK293 cells caused increased levels of oxidized bases and SSBs in the mt genome, respectively. Taken together, these studies demonstrate the critical role of NEIL2 and PNKP in maintenance of the mammalian mitochondrial genome.  相似文献   

10.
11.
In Escherichia coli cells carrying the srnB+ gene of the F plasmid, rifampin, added at 42°C, induces the extensive rapid degradation of the usually stable cellular RNA (Ohnishi, Y., (1975) Science 187, 257–258; Ohnishi, Y., Iguma, H., Ono, T., Nagaishi, H. and Clark, A.J. (1977) J. Bacteriol. 132, 784–789). We have studied further the necessity for rifampin and for high temperature in this degradation. Streptolidigin, another inhibitor of RNA polymerase, did not induce the RNA degradation. Moreover, the stable RNA of some strains in which RNA polymerase is temperature-sensitive did not degrade at the restrictive temperature in the absence of rifampin. These data suggest that rifampin has an essential role in the RNA degradation, possibly by the modification of RNA polymerase function. A protein (Mr 12 000) newly synthesized at 42°C in the presence of rifampin appeared to be the product of the srnB+ gene that promoted the RNA degradation. In a mutant deficient in RNAase I, the extent of the RNA degradation induced by rifampin was greatly reduced. RNAase activity of cell-free crude extract from the RNA-degraded cells was temperature-dependent. The RNAase was purified as RNAase I in DEAE-cellulose column chromatography and Sephadex G-100 gel filtration. Both in vivo and with purified RNAase I, a shift of the incubation mixture from 42 to 30°C, or the addition of Mg2+ ions, stopped the RNA degradation. Thus, an effect on RNA polymerase seems to initiate the expression of the srnB+ gene and the activation of RNAase I, which is then responsible for the RNA degradation of E. coli cells carrying the srnB+ gene.  相似文献   

12.
Abstract Genomic DNA was extracted from seven species of Verticillium and digested with the restriction endonucleases Eco RI or Hae III. Hybridization with an homologous V. albo-atrum ribosomal RNA gene probe revealed restriction fragment length polymorphisms (RFLPs) which could differentiate V. lateritium, V. lecanii, V. nigrescens, V. nubilum and V. tricorpus . Digestion with Eco RI did not provide RFLPs which could distinguish between V. albo-atrum and V. dahliae . Digestion of genomic and mitochondrial DNA with Hae III showed distinctive patterns on ethidium bromide gels which allowed each species to be distinguished. Some intra-species variation in patterns occurred and a combination of mitochondrial and ribosomal RNA gene complex RFLPs has potential as an aid for the characterization of species and sub-species populations in the genes Verticillium .  相似文献   

13.
Leber's hereditary optic neuropathy (LHON) is a maternally inherited disorder characterized by central vision loss in young adults. The majority of LHON cases around the world are associated with mutations in the mitochondrial genome at nucleotide positions (np) 3460, 11,778, and 14,484. Usually, these three mutations are screened in suspected LHON patients. The result is important not only in respect to the diagnosis but also as different LHON mutations lead to variations in expression, severity, and recovery of the disease. There are, however, a significant number of patients without any of these primary mutations. In these situations, genetic counselling of a patient and his family can be difficult. We sequenced the complete mitochondrial DNA (mtDNA) in 14 LHON patients with the typical clinical features but without a primary mtDNA mutation to evaluate the potential of extensive mutation screening for clinical purposes. Our results suggest to include the mutation at np 15,257 in a routine screening as well as the ND6 gene, a hot spot for LHON mutations. Screening for the secondary LHON mutations at np 4216 and np 13,708 may also help in making the diagnosis of LHON as these seem to modify the expression of LHON mutations. Although they do not allow to prove the clinical diagnosis, their presence increases the probability of LHON. Sequencing the complete mitochondrial genome can reveal novel and known rare disease causing mutations. However, considering the effort it adds little value for routine screening.  相似文献   

14.
A new method is presented with which we isolated milochondrial DNA from fresh carp liver usingdifferential centrifugation and DNase treatment that gave high yield of purified product with an easyand economical procedure. Highly distinct bands were displayed in agarose gel electrophoresls ofthe product digested with restrictlon enzymes, which were successfully used in constructingrestriction map and molecular clone of mitochondrial genes. With DNAs thus obtained, we havecloned cysteine tRNA gene (tRNA~(Cys) gene) of carp mitochondria, determined the nucleotide sequenceof it and the light strand origin, and depicted the cloverleaf secondary structure of tDNA~(Cya) and thelight strand origin. Analysis of nucleotide sequences of tRNA~(Cy) genes of 5 vertebrates has revealedunusual features of carp mitochondrial tRNA~(Cy) gene as compared with their cytoplasmic counter-parts, Altogether 36 bases were found in the light strand origin of carp mitochondriaf: 11 pairs in thestem; and 14 bases in the loop. As compared with those of other 11 vertebrate species, the sequenceof the stem is very conservative while both sequence and length of the loop are quite variable. Thestructure of the stem-loop may play an important role in light strand replication.  相似文献   

15.
16.
17.
Across the evolutionary spectrum, living organisms depend on high-fidelity DNA replication and recombination mechanisms to maintain genome stability and thus to avoid mutation and disease. The repair of severe lesions in the DNA such as double-strand breaks or stalled replication forks requires the coordinated activities of both the homologous recombination (HR) and DNA replication machineries. Growing evidence indicates that so-called "accessory proteins" in both systems are essential for the effective coupling of recombination to replication which is necessary to restore genome integrity following severe DNA damage. In this article we review the major processes of homology-directed DNA repair (HDR), including the double Holliday Junction (dHJ), synthesis-dependent strand annealing (SDSA), break-induced replication (BIR), and error-free lesion bypass pathways. Each of these pathways involves the coupling of a HR event to DNA synthesis. We highlight two major classes of accessory proteins in recombination and replication that facilitate HDR: Recombination mediator proteins exemplified by T4 UvsY, Saccharomyces cerevisiae Rad52, and human BRCA2; and DNA helicases/translocases exemplified by T4 Gp41/Gp59, E. coli DnaB and PriA, and eukaryotic Mcm2-7, Rad54, and Mph1. We illustrate how these factors help to direct the flow of DNA and protein-DNA intermediates on the pathway from a double-strand break or stalled replication fork to a high-fidelity recombination-dependent replication apparatus that can accurately repair the damage.  相似文献   

18.
19.
Summary The sequence of a segment of theDrosophila virilis mitochondrial DNA (mtDNA) molecule that contains the A+T-rich region, the small rRNA gene, the tRNAf-met, tRNAgln, and tRNAile genes, and portions of the ND2 and tRNAval genes is presented and compared with the corresponding segment of theD. yakuba mtDNA molecule. The A+T-rich regions ofD. virilis andD. yakuba contain two correspondingly located sequences of 49 and 276/274 nucleotides that appear to have been conserved during evolution. In each species the replication origin of the mtDNA molecule is calculated to lie within a region that overlaps the larger conserved sequence, and within this overlap is found a potential hairpin structure. Substitutions between the larger conserved sequences of the A+T-rich regions, the small mt-rRNA genes, and the ND2 genes are biased in favor of transversions, 71–97% of which are AT changes. There is a 13.8 times higher frequency of nucleotide differences between the 5 halves than between the 3 halves of theD. virilis andD. yakuba small mt-rRNA genes. Considerations of the effects of observed substitutions and deletion/insertions on possible nucleotide pairing within the small mt-rRNA genes ofD. virilis andD. yakuba strongly support the secondary structure model for theDrosophila small mt-rRNA that we previously proposed.  相似文献   

20.
Zhang S  Wang L  Hao Y  Wang P  Hao P  Yin K  Wang QK  Liu M 《Mitochondrion》2008,8(3):205-210
Leber's hereditary optic neuropathy (LHON) is a maternally inherited ocular disease which has been associated with three primary mitochondrial DNA mutations: G3640A, G11778A, and T14484C. In this study, we clinically characterized a Chinese family with complete penetrance of LHON. The patients in the family presented with variable clinical features. By direct DNA sequence analysis, we identified both T14484C mutation and a nearby T to C variant at nucleotide 14502 of mitochondria DNA. The T14502C variant altered I58 to V of the protein ND6, which was present in all patients of the family, but not in four unaffected family members and 200 normal controls. The co-existence of both T14484C mutation and T14502C substitution in all patients from the same LHON family suggests that T14502C may play a synergistic role with the primary mutation T14484C. The two variants together may account for the complete penetrance and absence of marked gender bias and visual recovery in the Chinese LHON family although we cannot exclude the possibility of simultaneous involvement of additional mitochondrial variant(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号