首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the influence of fatigue on tackling technique in rugby league players and determined the relationship between selected physiological capacities and fatigue-induced decrements in tackling technique. Eight rugby league players underwent a standardized one-on-one tackling drill in a 10-m grid. Players performed the one-on-one tackling drill before strenuous exercise and following game-specific repeated-effort exercise of progressively increasing intensities (corresponding to moderate, heavy, and very heavy intensity) in order to induce fatigue that was representative of match conditions. Video footage was taken from the rear, side, and front of the defending player. Tackling technique was objectively assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (height, body mass, and sum of 7 skinfold measurements), speed (10-, 20-, and 40-m sprint), muscular power (vertical jump), agility (L run), and estimated maximal aerobic power (VO2max multistage fitness test). A progressive increase in total repeated-effort time, heart rate, blood lactate concentration, and ratings of perceived exertion occurred throughout the repeated-effort protocol, demonstrating a progressive increase in intensity and fatigue. Fatigue resulted in progressive reductions in tackling technique. Players with the best tackling technique in a nonfatigued state demonstrated the greatest decrement in tackling technique under fatigued conditions. In addition, a significant association was observed between estimated VO2max (r = -0.62) and agility (r = 0.68) and fatigue-induced decrements in tackling technique. From a practical perspective, these findings suggest that strength and conditioning programs designed to develop endurance, change of direction speed, and anticipation skills may reduce fatigue-induced decrements in tackling technique. Furthermore, any defensive drills designed to improve tackling technique should be performed before and under fatigue.  相似文献   

2.
Success in rugby league football seems heavily reliant on players possessing an adequate degree of various physical fitness qualities, such as strength, power, speed, agility, and endurance, as well as the individual skills and team tactical abilities. The purpose of this study was to describe and compare the lower body strength, power, acceleration, maximal speed, agility, and sprint momentum of elite first-division national rugby league (NRL) players (n = 20) to second-division state league (SRL) players (n = 20) players from the same club. Strength and maximal power were the best discriminators of which players were in the NRL or SRL squads. None of the sprinting tests, such as acceleration (10-m sprint), maximal speed (40-m sprint), or a unique 40-m agility test, could distinguish between the NRL or SRL squads. However, sprint momentum, which was a product of 10-m velocity and body mass, was better for discriminating between NRL and SRL players as heavier, faster players would possess better drive forward and conversely be better able to repel their opponents' drive forward. Strength and conditioning specialists should therefore pay particular attention to increasing lower body strength and power and total body mass through appropriate resistance training while maintaining or improving 10-m sprint speed to provide their players with the underlying performance characteristics of play at the elite level in rugby leagues.  相似文献   

3.
The purpose of this study was to reinvestigate the relationship between aerobic fitness and fatigue indices of repeated-sprint ability (RSA), with special attention to methodological normalization. Soldiers were divided into low (n = 10) and high (n = 9) fitness groups according to a preset maximal aerobic speed (MAS) of 17 km·h(-1) (~60 ml O2·kg(-1)·min) measured with the University of Montreal Track Test (UMTT). Subjects' assessment included the RSA test (3 sets of 5 40-m sprints with 1-minute rest between sprints and 1.5 minutes between sets), a 40-m sprint (criterion test used in the computation of fatigue indices for the RSA test), strength and power measurement of the lower limbs, and the 20-m shuttle run test (20-m SRT) and the UMTT, which are measures of maximal aerobic power. The highest correlation with the RSA fatigue indices was obtained with the 20-m SRT (r = 0.90, p = 0.0001, n = 19), a test with 180° direction changes and accelerations and decelerations. The lower correlation (r = 0.66, p < 0.01, n = 19) with the UMTT (continuous forward running) suggests that some aerobic tests better disclose the importance of aerobic fitness for RSA and that aerobic power is not the sole determinant of RSA. However, neither strength nor vertical jumping power was correlated to the RSA fatigue indices. Subjects with greater MAS were able to maintain almost constant level of speed throughout series of repeated sprints and achieved better recovery between series. A MAS of at least 17 km·h(-1) favors constant and high speed level during repeated sprints. From a practical point of view, a high aerobic fitness is a precious asset in counteracting fatigue in sports with numerous sprint repetitions.  相似文献   

4.
The purpose of this study was to investigate the time course of adaptations to training in young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players. Fourteen young (14.1 +/- 0.2 years) and 21 older (16.9 +/- 0.3 years) junior rugby league players participated in a 10-week preseason strength, conditioning, and skills program that included 3 sessions each week. Subjects performed measurements of standard anthropometry (i.e., height, body mass, and sum of 7 skinfolds), muscular power (i.e., vertical jump), speed (i.e., 10-m, 20-m, and 40-m sprint), agility (505 test), and estimated maximal aerobic power (i.e., multistage fitness test) before and after training. In addition, players underwent a smaller battery of fitness tests every 3 weeks to assess the time course of adaptation to the prescribed training stimulus. During the triweekly testing sessions, players completed assessments of upper-body (i.e., 60-second push-up, sit-up, and chin-up test) and lower-body (i.e., multiple-effort vertical jump test) muscular endurance. Improvements in maximal aerobic power and muscular endurance were observed in both the young and the older junior players following training. The improvements in speed, muscular power, maximal aerobic power, and upper-body muscular endurance were greatest in the young junior players, while improvements in lower-body muscular endurance were greatest in the older junior players. These findings demonstrate that young (i.e., <15 years) and older (i.e., <18 years) junior rugby league players adapt differently to a given training stimulus and that training programs should be modified to accommodate differences in maturational and training age. In addition, the results of this study provide conditioning coaches with realistic performance improvements following a 10-week preseason strength and conditioning program in junior rugby league players.  相似文献   

5.
Previous research has demonstrated that muscular strength of the knee extensors is related to the speed an athlete can produce during a single-sprint performance. Football players, as well as many other athletes on the field and the court, execute multiple sprints during the course of a match. The purpose of this study was to examine the relationships between leg strength, single-sprint speed, and repeated-sprint ability. Thirty-eight football players from 3 codes (soccer, rugby league, rugby union) completed a 12- x 20-m repeated-sprint protocol and were evaluated for peak isokinetic knee extension and flexion torque at 60 degrees .s(-1), 150 degrees .s(-1), and 240 degrees .s(-1). Although single-sprint performance correlated with peak extensor and flexor torque at all velocities, the strongest correlation was observed between relative knee extensor torque at 240 degrees .s(-1) and the initial acceleration phase (0-10 m) of the single-sprint performance (r = -0.714, p < 0.01). However, the data suggest that factors other than strength contribute to repeated-sprint ability. This finding provides new evidence in elucidating the relationship between strength and repeated-sprint performance.  相似文献   

6.
Repeated sprint testing is gaining popularity in team sports, but the methods of data analysis and relationships to speed and endurance qualities are not well described. We compared three different methods for analyzing repeated sprint test results, and we quantified relationships between repeated sprints, short sprints, and endurance test scores. Well-trained male junior Australian Football players (n = 60, age 18.1 +/- 0.4 years, height 1.88 +/- 0.07 m, mass 82.0 +/- 8.1 kg; mean +/- SD) completed a 6 x 30-m repeated sprint running test on a 20-second cycle, a 20-m sprint test (short sprint), and the 20-m multistage shuttle run for endurance. Repeated sprint results were evaluated in three ways: total time for all six sprints (TOTAL), percent change from predicted times (PRED) from the fastest 30-m sprint time, and percent change from first to last sprint (CHANGE). We observed a very large decrement (CHANGE 6.3 +/- 0.7%, mean +/- 90% confidence limits) in 30-m performance from the first to last sprint (4.16 +/- 0.10 to 4.42 +/- 0.11 seconds, mean +/- SD). Results from TOTAL were highly correlated with 20-m sprint and 20-m multistage shuttle run tests. Performance decrements calculated by PRED were highly correlated with TOTAL (r = 0.91), but neither method was directly comparable with CHANGE (r = -0.23 and r = 0.12 respectively). TOTAL was moderately correlated with fastest 20-m sprint time (r = 0.66) but not the 20-m multistage shuttle run (r = -0.20). Evaluation of repeated sprint testing is sensitive to the method of data analysis employed. The total sprint time and indices of the relative decrement in performance are not directly interchangeable. Repeated sprint ability seems more related to short sprint qualities than endurance fitness.  相似文献   

7.
The purpose of this study was to investigate the effect of instantaneous performance feedback (peak velocity) provided after each repetition of squat jump exercises over a 6-week training block on sport-specific performance tests. Thirteen professional rugby players were randomly assigned to 1 of 2 groups, feedback (n = 7) and non-feedback (n = 6). Both groups completed a 6-week training program (3 sessions per week) comprising exercises typical of their normal preseason conditioning program. Squat jumps were performed in 2 of the 3 sessions each week during which both groups performed 3 sets of 3 concentric squat jumps using a barbell with an absolute load of 40 kg. Participants in group 1 were given real-time feedback on peak velocity of the squat jump at the completion of each repetition using a linear position transducer and customized software, whereas those in group 2 did not receive any feedback. Pre and posttesting consisted of vertical jump, horizontal jump, and 10-/20-/30-m timed sprints. The relative magnitude (effect size) of the training effects for all performance tests was found to be small (0.18-0.28), except for the 30-m sprint performance, which was moderate (0.46). The probabilities that the use of feedback during squat jump training for 6 weeks was beneficial to increasing performance of sport-specific tests was 45% for vertical jump, 65% for 10-m sprints, 49% for 20-m sprints, 83% for horizontal jump, and 99% for 30-m sprints. In addition to improvements in the performance of sport-specific tests, suggesting the potential for greater adaptation and larger training effects, the provision of feedback may also be used in applications around performance targets and thresholds during training.  相似文献   

8.
While studies have investigated speed and change of direction speed in rugby league players, no study has investigated the reactive agility of these athletes. In addition, the relationship among speed, change of direction speed, and reactive agility within the specific context of rugby league has not been determined. With this in mind, the purpose of this study was to investigate a wide range of speed, change of direction speed, and reactive agility tests commonly used by rugby league coaches to determine which, if any tests discriminated higher and lesser skilled players, and to investigate the relationship among speed, change of direction speed, and reactive agility in these athletes. Forty-two rugby league players completed tests of speed (5 m, 10 m, and 20 m sprint), change of direction speed ('L' run, 505 test, and modified 505 test), and reactive agility. The validity of the tests to discriminate higher and lesser skilled competitors was evaluated by testing first grade (N = 12) and second grade (N = 30) players. First grade players had faster speed, and movement and decision times on the reactive agility test than second grade players. No significant differences were detected between first and second grade players for change of direction speed. While movement times on the reactive agility test were significantly related to 10 m and 20 m sprint times and change of direction speed, no significant relationships were detected among measures of decision time and response accuracy during the reactive agility test and measures of linear speed and change of direction speed. These findings question the validity of preplanned change of direction speed tests for discriminating higher and lesser skilled rugby league players, while also highlighting the contribution of perceptual skill to agility in these athletes.  相似文献   

9.
The purpose of this study was to determine the effect of different static and dynamic stretch protocols on 20-m sprint performance. The 97 male rugby union players were assigned randomly to 4 groups: passive static stretch (PSS; n = 28), active dynamic stretch (ADS; n = 22), active static stretch (ASST; n = 24), and static dynamic stretch (SDS; n = 23). All groups performed a standard 10-minute jog warm-up, followed by two 20-m sprints. The 20-m sprints were then repeated after subjects had performed different stretch protocols. The PSS and ASST groups had a significant increase in sprint time (p < or = 0.05), while the ADS group had a significant decrease in sprint time (p < or = 0.05). The decrease in sprint time, observed in the SDS group, was found to be nonsignificant (p > or = 0.05). The decrease in performance for the 2 static stretch groups was attributed to an increase in the musculotendinous unit (MTU) compliance, leading to a decrease in the MTU ability to store elastic energy in its eccentric phase. The reason why the ADS group improved performance is less clear, but could be linked to the rehearsal of specific movement patterns, which may help increase coordination of subsequent movement. It was concluded that static stretching as part of a warm-up may decrease short sprint performance, whereas active dynamic stretching seems to increase 20-m sprint performance.  相似文献   

10.
This study investigated the tackling ability of junior elite and subelite rugby league players, and determined the relationship between selected physiological and anthropometric characteristics and tackling ability in these athletes. Twenty-eight junior elite (mean ± SD age, 16.0 ± 0.2 years) and 13 junior subelite (mean ± SD age, 15.9 ± 0.6 years) rugby league players underwent a standardized 1-on-1 tackling drill in a 10-m grid. Video footage was taken from the rear, side, and front of the defending player. Tackling proficiency was assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (stature, body mass, and sum of 7 skinfolds), acceleration (10-m sprint), change of direction speed (505 test), and lower body muscular power (vertical jump). Junior elite players had significantly greater (p < 0.05) tackling proficiency than junior subelite players (65.7 ± 12.5 vs. 54.3 ± 16.8%). Junior elite players tended to be taller, heavier, leaner, and have greater acceleration, change of direction speed, and muscular power, than the junior subelite players. The strongest individual correlates of tackling ability were acceleration (r = 0.60, p < 0.001) and lower body muscular power (r = 0.38, p < 0.05). When multiple linear regression analysis was performed to determine which of the physiological and anthropometric characteristics predicted tackling ability, fast acceleration was the only variable that contributed significantly (r2 = 0.24, p < 0.01) to the predictive model. These findings demonstrate that fast acceleration, and to a lesser extent, lower body muscular power contribute to effective tackling ability in junior rugby league players. From a practical perspective, strength and conditioning coaches should emphasize the development of acceleration and lower body muscular power qualities to improve tackling ability in junior rugby league players.  相似文献   

11.
This study investigated the tackling ability of high-performance rugby league players and determined the relationship between physiological and anthropometric qualities and tackling ability in these athletes. Twenty professional (National Rugby League) and 17 semiprofessional (Queensland Cup) rugby league players underwent a standardized 1-on-1 tackling drill in a 10-m grid. Video footage was taken from the rear, side, and front of the defending player. Tackling proficiency was assessed using standardized technical criteria. In addition, all players underwent measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), acceleration (10-m sprint), change of direction speed (505 test), and lower body muscular power (vertical jump). Professional players had significantly greater (p ≤ 0.05) tackling proficiency than semiprofessional players (87.5 ± 2.0 vs. 75.0 ± 2.3%). Professional players were significantly (p ≤ 0.05) older, more experienced, leaner, and had greater acceleration than semiprofessional players. The strongest individual correlates of tackling ability were age (r = 0.41, p ≤ 0.05), playing experience (r = 0.70, p ≤ 0.01), skinfold thickness (r = -0.59, p ≤ 0.01), acceleration (r = 0.41, p ≤ 0.05), and lower body muscular power (r = 0.38, p ≤ 0.05). When hierarchical multiple regression analysis was performed to determine which of the variables predicted tackling ability, playing experience and lower body muscular power were the only variables that contributed significantly (r2 = 0.60, p ≤ 0.01) to the predictive model. From a practical perspective, strength and conditioning coaches should emphasize the development of acceleration, lower body muscular power, and lean muscle mass to improve tackling ability in high-performance rugby league players.  相似文献   

12.
The aim of the study was to investigate the acute effect of a heavy resisted sprint when used as a preload exercise to enhance subsequent 25-m on-ice sprint performance. Eleven competitive ice-hockey players (mean ± SD: Age = 22.09 ± 3.05 years; Body Mass = 83.47 ± 11.7 kg; Height = 1.794 ± 0.060 m) from the English National League participated in a same-subject repeated-measures design, involving 2 experimental conditions. During condition 1, participants performed a 10-second heavy resisted sprint on ice. Condition 2 was a control, where participants rested. An electronically timed 25-m sprint on ice was performed before and 4 minutes after each condition. The results indicated no significant difference (p = 0.176) between pre (3.940 + 0.258 seconds) and post (3.954 + 0.261 seconds) sprint times in the control condition. The intervention condition, however, demonstrated a significant 2.6% decrease in times (p = 0.02) between pre (3.950 + 0.251 seconds) and post (3.859 + 0.288 seconds) test sprints. There was also a significant change (p = 0.002) when compared to the times of the control condition. These findings appear to suggest that the intensity and duration of a single resisted sprint in this study are sufficient to induce an acute (after 4 minutes of rest) improvement in 25-m sprint performance on ice. For those athletes wishing to improve skating speed, heavy resisted sprints on ice may provide a biomechanically suitable exercise for inducing potentiation before speed training drills.  相似文献   

13.
This study investigated the physiological and anthropometric characteristics of rugby league players during a competitive season. Sixty-eight rugby league players were allocated into training (n = 52) and nonexercise control (n = 16) groups. The training group participated in 2 field-training sessions per week, with training loads, match loads, and injury rates recorded. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility (L run), and maximal aerobic power (multistage fitness test) in December (off-season), March (preseason), May (midseason), and August (end season). Increases in maximal aerobic power and muscular power and reductions in skinfold thickness were observed during the early phases of the season when training loads were highest. However, reductions in muscular power and maximal aerobic power and increases in skinfold thickness occurred toward the end of the season, when training loads were lowest and match loads and injury rates were highest. These findings suggest that high overall playing intensity and match loads in end-season matches increase in injury rates in the latter half of the season, and residual fatigue associated with limited recovery between successive matches may compromise the physical development of rugby league players.  相似文献   

14.
The energetics of 2 field tests that reflect physical performance in intermittent sports (i.e., the Interval Shuttle Sprint Test [ISST] and the Interval Shuttle Run Test [ISRT]) were examined in 21 women field hockey players. The ISST required the players to perform 10 shuttle sprints starting every 20 seconds. During the ISRT, players alternately ran 20-m shuttles for 30 seconds and walked for 15 seconds with increasing speed. Anaerobic and aerobic power tests included Wingate cycle sprints and a .V(O2)max cycle test, respectively. Based on correlation and regression analyses, it was concluded that for the ISST, anaerobic energetic pathways contribute mainly to energy supply for peak sprint time, while aerobic energetic pathways also contribute to energy supply for total sprint time. Energy during the ISRT is supplied mainly by the aerobic energy system. Depending on the aspect of physical performance a coach wants to determine, the ISST or ISRT can be used.  相似文献   

15.
The objective of this research was to compare the effect of Post-Activation Performance Enhancement (PAPE) exerted on the back squat (BS) versus the barbell hip thrust (HT) on the sprint performance (5- and 10-m). 17 male amateur rugby players participated in the study (age 22.14 ± 2.52 years; body mass 81.06 ± 9.6 kg; height 1.78 ± 0.05 m). All participants performed a dynamic maximum strength test (3RM) in BS and HT at maximum speed. Two randomized sessions were performed inducing PAPE using BS or HT trough three series with three repetitions at 85% 1RM eight minutes before the sprint tests. An ANOVA of repeated measurement, found no differences in the time for 5-m (F = 0.398, P = 0.537, η2p = 0.024) or 10-m (F = 2.589, P = 0.127, η2p = 0.139). There were no significant differences in the Protocol effect between HT and BS in 5-m or 10-m (F = 2.963, P = 0.104, η2p = 0.156 and F = 1.472, P = 0.243 η2p = 0.084, respectively). There were also no differences in the Time x Protocol interaction at 5-m (F = 0.001, P = 0.976, η2p < 0.001) or 10-m (F = 4.174, P = 0.058, η2p = 0.207). The effect size obtained in the results of the sprint tests was small in both exercises (ES < 0.2). None of the BS or HT exercises performed with heavy load induced a significant PAPE phenomenon on the ability to sprint in rugby players.  相似文献   

16.
The purpose of this study was to investigate the sprinting demands of National Rugby League (NRL) competition and characterize the sprinting patterns of different rugby league playing positions. Thirty-seven elite rugby league players (mean ± SE age: 23.6 ± 0.5 years) underwent global positioning satellite analysis during 104 NRL appearances. The majority (67.5%) of sprint efforts were across distances of <20 m. The most common sprint distance for hit-up forwards was 6-10 m (46.3%). Outside backs had a greater proportion (33.7%) of sprint efforts over distances of ≥21 m. The proportion of sprint efforts over 40 m or greater for hit-up forwards, wide running forwards, adjustables, and outside backs was 5.0, 7.4, 5.0, and 9.7%, respectively. Of the sprints performed, approximately 48.0% involved contact, approximately 58.0% were preceded by forward locomotion (forward walking, jogging, or striding), whereas over 24.0% occurred from a standing start. Hit-up forwards more commonly sprinted from a standing start, or after lateral movement, whereas forward striding activities more commonly preceded sprint efforts for the adjustables and outside backs. The majority of sprint efforts were performed without the ball (78.7 vs. 21.3%). Most sprint efforts (67.5%) were followed by a long recovery (i.e., ≥5 minutes). Outside backs had the greatest proportion (76.1%) of long duration recovery periods and the smallest proportion (1.8%) of short duration recovery periods (i.e., <60 seconds) between sprints. The results of this study demonstrate differences among rugby league playing positions for the nature of sprint efforts and the typical distances covered during these efforts. Furthermore, the activities preceding and the recovery periods after sprint efforts were different among playing positions. These findings suggest that rugby league sprint training should be tailored to meet the individual demands of specific playing positions.  相似文献   

17.
This study investigated the physiological and anthropometric characteristics of junior rugby league players over a competitive season. Forty-five rugby league players were allocated into training (n = 36) and nonexercise control (n = 9) groups. The training group participated in 2 field-training sessions each week with training loads, match loads, and injury rates recorded. Subjects performed measurements of standard anthropometry (height, body mass, and sum of 7 skinfolds), muscular power (vertical jump), speed (10-, 20-, and 40-m sprint), agility ('L run'), and estimated maximal aerobic power (multi-stage fitness test) in December (off-season), March (preseason), May (midseason), and August (end-season). Training loads progressively increased in the general preparatory phase of the season (preseason period), and declined slightly during the competitive phase of the season. Match intensity and match loads decreased throughout the season. Increases in estimated maximal aerobic power and muscular power and reductions in skinfold thickness occurred during the general preparatory phase of the season, and were maintained throughout the competitive phase of the season. These findings suggest that high training loads in the general preparatory phase of the season and low match loads in the competitive phase of the season allow junior rugby league players to maintain a high level of fitness throughout an entire competitive season.  相似文献   

18.
The purpose of this study was to evaluate the effects of the speed, agility, quickness (SAQ) training method on power performance in soccer players. Soccer players were assigned randomly to 2 groups: experimental group (EG; n = 50) and control group (n = 50). Power performance was assessed by a test of quickness--the 5-m sprint, a test of acceleration--the 10-m sprint, tests of maximal speed--the 20- and the 30-m sprint along with Bosco jump tests--squat jump, countermovement jump (CMJ), maximal CMJ, and continuous jumps performed with legs extended. The initial testing procedure took place at the beginning of the in-season period. The 8-week specific SAQ training program was implemented after which final testing took place. The results of the 2-way analysis of variance indicated that the EG improved significantly (p < 0.05) in 5-m (1.43 vs. 1.39 seconds) and in 10-m (2.15 vs. 2.07 seconds) sprints, and they also improved their jumping performance in countermovement (44.04 vs. 4.48 cm) and continuous jumps (41.08 vs. 41.39 cm) performed with legs extended (p < 0.05). The SAQ training program appears to be an effective way of improving some segments of power performance in young soccer players during the in-season period. Soccer coaches could use this information in the process of planning in-season training. Without proper planning of the SAQ training, soccer players will most likely be confronted with decrease in power performance during in-season period.  相似文献   

19.
When testing the ability of sportsmen to repeat maximal intensity efforts, or when designing specific training exercises to improve it, fatigue during repeated sprints is usually investigated through a number of sprints identical for all subjects, which induces a high intersubject variability in performance decrement in a typical heterogeneous group of athletes (e.g., team sport group, students, and research protocol volunteers). Our aim was to quantify the amplitude of the reduction in this variability when individualizing the sprint dose, that is, when requiring subjects to perform the number of sprints necessary to reach a target level of performance decrement. Fifteen healthy men performed 6-second sprints on a cycle ergometer with 24 seconds of rest until exhaustion or until 20 repetitions in case no failure occurred. Peak power output (PPO) was measured and a fatigue index (FI) computed. The variability in PPO decrement was compared between the 10th sprint and the sprint at which subject reached the target FI of 10%. Individual FI values after the 10th sprint were 14.6 ± 6.9 vs. 11.1 ± 1.2%, when individualizing the sprint dose, which corresponded to coefficients of interindividual variability of ~47.3 and ~10.8%, respectively. Individualizing the sprint dose substantially reduced intersubject variability in performance decrement, enabling a more standardized state of fatigue in repeated-sprints protocols designed to induce fatigue and test or train this specific repeated-sprint ability in a heterogeneous group of athletes. A direct feedback on the values of performance parameters is necessary between each sprint for the experimenter to set this individualized sprint dose.  相似文献   

20.
The aim of this study was to examine whether the changes in the rules of the game instituted in 2000 have modified the physiological factors of success in basketball. The performances of 8 elite male players and 8 average-level players were compared in order to identify which components of fitness among agility, speed, anaerobic power, anaerobic capacity, and upper body strength were key determinants of performance in modern basketball. Each subject performed 7 tests, including vertical jump (VJ), 20-m sprint, agility T test, suicide sprint, 30-second Wingate anaerobic test (WAnT), isokinetic testing of the knee extensors, and 1 repetition maximum (1RM) bench press test. The statistical difference in the anaerobic performances was assessed by Student's t test. The main results showed that, compared to average-level players, elite-level players achieved significantly better performances in the agility T test (+6.2%), VJ test (+8.8%), peak torques developed by knee extensors (+20.2%), and 1RM bench press (+18.6%, p < 0.05). In contrast, no significant difference between groups was observed on 20-m sprint, suicide run, and parameters of the WAnT (p > 0.05). These results emphasized the importance of anaerobic power in modern basketball, whereas anaerobic capacity does not seem to be a key aspect to consider. In this context, coaches are advised to avoid using exercises lasting >/=30 seconds in their physical fitness programs, but instead to focus on short and intense tests such as VJ, agility T test, and sprints over very short distances (5 or 10 m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号