首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gene variations in the fat mass- and obesity-associated gene (FTO) have shown controversial associations with obesity and metabolic syndrome (MetS) in several populations. We explored the association of FTO gene with obesity, MetS, and insulin-related parameters separately in men and women. Two SNPs in the FTO, gene rs9939609 and rs1421085, were genotyped by the Taqman System in 1967 adults (mean age of the whole group 50.1 ± 12.0; 48.4 % male). A random sample of the Turkish Adult Risk Factor cohort was cross-sectionally analyzed. Both SNPs exhibited strong linkage disequilibrium (r2 = 0.85) and minor alleles were associated with risk of obesity in women and of MetS in men. Carriers of the rs1421085 C-allele exhibited higher body mass index (BMI) in each gender. Adjusted fasting insulin and HOMA index were significantly higher in C-allele carriers in men alone. Logistic regression analysis demonstrated significantly increased likelihood for obesity in female C-risk allele carriers (OR 1.61; 95 % CI 1.19–2.18), after adjustment for age, smoking status, alcohol usage, physical activity grade and presence of diabetes mellitus. Male C-allele carriers were at increased risk for MetS (OR 1.44; 95 % CI 1.07–1.95), adjusted for age, smoking status, alcohol consumption, and physical activity. Further adjustment for BMI attenuated the MetS risk, indicating interaction between C-allele, gender and BMI. The FTO gene in Turkish adults contributes independently to obesity in women and—by interacting with BMI—to MetS and insulin resistance in men.  相似文献   

2.
Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility in women. It is also associated with metabolic disturbances that place women at increased risk for obesity and type 2 diabetes. There is strong evidence for familial clustering of PCOS and a genetic predisposition. However, the gene(s) responsible for the PCOS phenotypes have not been elucidated. This two-phase family-based and case-control genetic study was designed to address the question of whether SNPs identified as susceptibility loci for obesity in genome-wide association studies (GWAS) are also associated with PCOS and elevated BMI. Members of 439 families having at least one offspring with PCOS were genotyped for 15 SNPs previously shown to be associated with obesity. Linkage and association with PCOS was assessed using the transmission/disequilibrium test (TDT). These SNPs were also analyzed in an independent case-control study involving 395 women with PCOS and 176 healthy women with regular menstrual cycles. Only one of these 15 SNPs (rs2815752 in NEGR1) was found to have a nominally significant association with PCOS (χ2 = 6.11, P = 0.013), but this association failed to replicate in the case-control study. While not associated with PCOS itself, five SNPs in FTO and two in MC4R were associated with BMI as assessed with a quantitative-TDT analysis, several of which replicated association with BMI in the case-control cohort. These findings demonstrate that certain SNPs associated with obesity contribute to elevated BMI in PCOS, but do not appear to play a major role in PCOS per se. These findings support the notion that PCOS phenotypes are a consequence of an oligogenic/polygenic mechanism.  相似文献   

3.
The circadian clock regulates the daily rhythms of several physiological and behavioral processes. Disruptions in clock genes have been associated with obesity and related comorbidities. This study aimed to analyze the association of DNA methylation signatures at circadian rhythm pathway genes with body mass index (BMI), metabolic profiles and dietary intakes. DNA methylation profiling was determined by microarray in white blood cells from 474 adults from the Methyl Epigenome Network Association (MENA) project. Kyoto Encyclopedia of Genes and Genomes database was used to identify the genes integrating the circadian rhythm pathway. Network enrichment analyses were performed with the PathDIP platform. Associations between circadian methylation patterns with anthropometric measurements, the metabolic profile, clinical data and dietary intakes were analyzed. DNA methylation patterns of nine CpG sites at six circadian rhythm pathway genes were strongly correlated with BMI (false discovery rates <0.0001). These CpGs encompassed cg09578018 (RORA), cg20406576 (PRKAG2), cg10059324 (PER3), cg01180628 (BHLHE40), cg23871860 (FBXL3), cg16964728 (RORA), cg14129040 (CREB1), cg07012178 (PRKAG2) and cg24061580 (PRKAG2). Interestingly, network enrichment analyses revealed that the six BMI-associated genes statistically contributed to the regulation of the circadian rhythm pathway (p = 1.9E-10). In addition, methylation signatures at cg09578018 (RORA), cg24061580 (PRKAG2), cg01180628 (BHLHE40) and cg10059324 (PER3) also correlated with insulin resistance (p < 0.0001) and mean arterial blood pressure (p < 0.0001). Furthermore, relevant correlations (p < 0.05) between methylation at cg09578018 (RORA) and cg01180628 (BHLHE40) with total energy and carbohydrate intakes were found. This investigation revealed potential associations of DNA methylation profiles at circadian genes with obesity, metabolic disturbances and carbohydrate intake, with potential impact on weight homeostasis.  相似文献   

4.
The major underlying cause of CHD is atherosclerosis, and oxidised LDL is known to play an important role in its development. We examined the role of three single nucleotide polymorphisms (SNPs) in the 15-lipoxygenase gene (ALOX15), in atherosclerosis. We genotyped three SNPs in the ALOX15 promoter in two Western Australian samples—1,111 community-based individuals and 556 with CHD. SNPs and haplotypes were tested for an association with carotid plaque, intima-media thickness and risk of CHD. The −611GG genotype was associated with increased likelihood of carotid plaque in CHD patients (OR = 4.01, 95%CI = 1.39–11.53, P = 0.005) and the C alleles of the G-220C and G-189C SNPs were associated with decreased likelihood of plaque among cases (OR = 0.66, 95%CI = 0.43–0.99, P = 0.05 and OR = 0.51, 95%CI = 0.34–0.78, P = 0.002 respectively). The GGG haplotype was associated with increased risk of carotid plaque in CHD patients (OR = 5.77, 95%CI = 1.82–18.29, P = 0.0007) and in community-based individuals under 53 years (OR = 4.15, 95%CI = 1.23–14.08, P = 0.02). No association was observed between ALOX15 SNPs or haplotypes and intima-media thickness. This study is novel as it is the first to examine the association between 15-lipoxygenase polymorphisms and atherosclerotic indicators. These findings suggest a possible role of ALOX15 polymorphisms in focal plaque formation.  相似文献   

5.
Although reported gene variants in the RET oncogene have been directly associated with multiple endocrine neoplasia type 2 and hereditary medullary thyroid carcinoma, other mutations are classified as variants of uncertain significance (VUS) until the associated clinical phenotype is made clear. Currently, some 46 non-synonymous VUS entries exist in curated archives. In the absence of a gold standard method for predicting phenotype outcomes, this follow up study applies feature selected amino acid physical and chemical properties feeding a Bayes classifier to predict disease association of uncertain gene variants into categories of benign and pathogenic. Algorithm performance and VUS predictions were compared to established phylogenetic based mutation prediction algorithms. Curated outcomes and unpublished RET gene variants with known disease association were used to benchmark predictor performance. Reliable classification of RET uncertain gene variants will augment current clinical information of RET mutations and assist in improving prediction algorithms as knowledge increases.  相似文献   

6.
7.
Family history is a major risk factor for myocardial infarction (MI). However, known gene variants associated with MI cannot fully explain the genetic component of MI risk. We hypothesized that a gene-centric association study that was not limited to candidate genes could identify novel genetic associations with MI. We studied 11,053 single-nucleotide polymorphisms (SNPs) in 6,891 genes, focusing on SNPs that could influence gene function to increase the likelihood of identifying disease-causing gene variants. To minimize false-positive associations generated by multiple testing, two studies were used to identify a limited number of nominally associated SNPs; a third study tested the hypotheses that these SNPs are associated with MI. In the initial study (of 340 cases and 346 controls), 637 SNPs were associated with MI (P<.05); these were evaluated in a second study (of 445 cases and 606 controls), and 31 of the 637 SNPs were associated with MI (P<.05) and had the same risk allele as in the first study. For each of these 31 SNPs, we tested the hypothesis that it is associated with MI, using a third study (of 560 cases and 891 controls). We found that four of these gene variants were associated with MI (P<.05; false-discovery rate <10%) and had the same risk allele as in the first two studies. These gene variants encode the cytoskeletal protein palladin (KIAA0992 [odds ratio (OR) 1.40]), a tyrosine kinase (ROS1 [OR 1.75]), and two G protein-coupled receptors (TAS2R50 [OR 1.58] and OR13G1 [OR 1.40]); all ORs are for carriers of two versus zero risk alleles. These findings could lead to a better understanding of MI pathophysiology and improved patient risk assessment.  相似文献   

8.

Background

Obesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to obesity are not very well understood. We have performed a genome wide association study (GWA) for early onset (extreme) obesity.

Methodology/Principal Findings

a) GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single nucleotide polymorphisms) for early onset extreme obesity based on 487 extremely obese young German individuals and 442 healthy lean German controls; b) confirmatory analyses on 644 independent families with at least one obese offspring and both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency ≥10%) with the lowest p-values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) within one linkage disequilibrium (LD) block including the GWA SNP rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.13×10−7, corrected p = 0.0494; odds ratio (OR)CT 1.67, 95% confidence interval (CI) 1.22–2.27; ORTT 2.76, 95% CI 1.88–4.03) belonged to the 15 SNPs showing the strongest evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six FTO SNPs we chose only two representing the LD bock). For both FTO SNPs the initial association was confirmed (both Bonferroni corrected p<0.01). However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium.

Conclusions/Significance

Our GWA for extreme early onset obesity substantiates that variation in FTO strongly contributes to early onset obesity. This is a further proof of concept for GWA to detect genes relevant for highly complex phenotypes. We concurrently show that nine additional SNPs with initially low p-values in the GWA were not confirmed in our family study, thus suggesting that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings.  相似文献   

9.
10.
Obesity and diabetes mellitus are associated with low or elevated serum leptin and insulin levels (U-like relation). Mutations in LEP and INS are linked to decreases in leptin and insulin while mutations in LEPR and INSR are linked to their increase. Homozygous LEP mutations are associated with the early onset of severe obesity and the diverse impairment of physiological functions. The recessive LEPR mutations are associated with similar pathology in homozygous state. Missense mutations of INS are dominant and induce the synthesis of chimeric proinsulin, which may interfere with the folding and processing of active insulin molecules. In the heterozygous state, they cause insulin deficiency and PND. Recessive INS mutations do not induce the synthesis of anomalous proinsulin, and they are only associated with PND in the homozygous state. Mutations of INSR induce insulin resistance, lipodystrophy, other pathologies, and suggest the important role of insulin in glucose level regulation and in the stimulation of fat accumulation.  相似文献   

11.
肥胖以及相关的代谢综合征已经成为全球性的公共健康问题。大量的研究表明,肥胖形成以及减肥过程均与肠道菌群密切相关且相互影响。肠道菌群以及弱炎症反应成为肥胖以及相关代谢综合征的两大重要影响因素。本文综述了近几年来,肠道菌群失调对宿主能量储存以及新陈代谢的影响,以及弱炎症反应对肥胖引起的代谢综合征的影响。大量的研究证明,益生元有助于益生菌的生长,而益生菌可以调节肠道菌群以及改善肠道内弱炎症反应,借助于益生菌以及益生元的方法也许能为由肠道菌群失调以及弱炎症反应引起的肥胖及其代谢综合征提供一种新的治疗方法。  相似文献   

12.
Children born to obese mothers are at increased risk for obesity, but the mechanisms behind this association are not fully understood. Our study aimed to investigate differences in the functions encoded by the microbiome of infants at 18 months of age when the transition from early infant-feeding to solid family foods is established. To investigate the impact of maternal prepregnancy body mass index on infants’ gut microbiome, faecal samples from infants born to normoweight (n = 21) and obese mothers (n = 18) were analysed by 16S rRNA gene sequencing and a functional-inference-based microbiome analysis. Our results indicated that Firmicutes was significantly enriched in infants born to normoweight mothers whereas Bacteroidetes was significantly enriched in infants born to obese women. In both microbiomes, the greatest number of genes (>50%) that were assigned a function encoded for proteins involved in “metabolism” among tier 1 KEGG Orthology (KO) categories. At lower KO functional categories, the microbiome of infants born to normoweight mothers was characterized by a significant enrichment in the abundances of “pentose phosphate pathway” (p = 0.037), “lysine biosynthesis” (p = 0.043), “glycerolipid metabolism” (p = 0.042), and “C5-branched dibasic acid metabolism” (p = 0.045). Notably, the microbiome of infants born to obese mothers was significantly enriched in “streptomycin biosynthesis” (p = 0.047), “sulphur metabolism” (p = 0.041), “taurine and hypotaurine metabolism” (p = 0.036), and “lipopolysaccharide biosynthesis” (p = 0.043). In summary, our study showed that maternal prepregnancy obesity may imprint a selective gut microbial composition during late infancy with distinct functional performances.  相似文献   

13.
The erythrocyte sedimentation rate (ESR), a commonly performed test of the acute phase response, is the rate at which erythrocytes sediment in vitro in 1 hr. The molecular basis of erythrocyte sedimentation is unknown. To identify genetic variants associated with ESR, we carried out a genome-wide association study of 7607 patients in the Electronic Medical Records and Genomics (eMERGE) network. The discovery cohort consisted of 1979 individuals from the Mayo Clinic, and the replication cohort consisted of 5628 individuals from the remaining four eMERGE sites. A nonsynonymous SNP, rs6691117 (Val→IIe), in the complement receptor 1 gene (CR1) was associated with ESR (discovery cohort p = 7 × 10(-12), replication cohort p = 3 × 10(-14), combined cohort p = 9 × 10(-24)). We imputed 61 SNPs in CR1, and a "possibly damaging" SNP (rs2274567, His→Arg) in linkage disequilibrium (r(2) = 0.74) with rs6691117 was also associated with ESR (discovery p = 5 × 10(-11), replication p = 7 × 10(-17), and combined cohort p = 2 × 10(-25)). The two nonsynonymous SNPs in CR1 are near the C3b/C4b binding site, suggesting a possible mechanism by which the variants may influence ESR. In conclusion, genetic variation in CR1, which encodes a protein that clears complement-tagged inflammatory particles from the circulation, influences interindividual variation in ESR, highlighting an association between the innate immunity pathway and erythrocyte interactions.  相似文献   

14.
In this paper it was investigated if any genotypic footprints from the fat mass and obesity associated (FTO) SNP could be found in 600 MHz 1H CPMG NMR profiles of around 1,000 human plasma samples from healthy Danish twins. The problem was addressed with a combination of univariate and multivariate methods. The NMR data was substantially compressed using principal component analysis or multivariate curve resolution-alternating least squares with focus on chemically meaningful feature selection reflecting the nature of chemical signals in an NMR spectrum. The possible existence of an FTO signature in the plasma samples was investigated at the subject level using supervised multivariate classification in the form of extended canonical variate analysis, classification tree modeling and Lasso (L1) regularized linear logistic regression model (GLMNET). Univariate hypothesis testing of peak intensities was used to explore the genotypic effect on the plasma at the population level. The multivariate classification approaches indicated poor discriminative power of the metabolic profiles whereas univariate hypothesis testing provided seven spectral regions with p < 0.05. Applying false discovery rate control, no reliable markers could be identified, which was confirmed by test set validation. We conclude that it is very unlikely that an FTO-correlated signal can be identified in these 1H CPMG NMR plasma metabolic profiles and speculate that high-throughput un-targeted genotype-metabolic correlations will in many cases be a difficult path to follow.  相似文献   

15.
Ukkola O 《Peptides》2011,32(11):2319-2322
An increasing understanding of the role of genes in the development of obesity may reveal genetic variants that, in combination with conventional risk factors, may help to predict an individual's risk for developing metabolic disorders. Accumulating evidence indicates that ghrelin plays a role in regulating food intake and energy homeostasis and it is a reasonable candidate gene for obesity-related co-morbidities. In cross-sectional studies low total ghrelin concentrations and some genetic polymorphisms of ghrelin have been associated with obesity-associated diseases. The present review highlights many of the important problems in association studies of genetic variants and complex diseases. It is known that population-specific differences in reported associations exist. We therefore conclude that more studies on variants of ghrelin gene are needed to perform in different populations to get deeper understanding on the relationship of ghrelin gene and its variants to obesity.  相似文献   

16.
Studies of a range of taxa, including birds, have revealed latitudinal clines in allele length at the conserved Clock locus, a gene with known influences on behaviour and physiology. Such clines might reflect adaptation to seasonal variation, a suggestion supported by a recent within‐population analysis of blue tits Cyanistes caeruleus, which found associations between Clock genotype and timing of breeding in females. To test the generality of this pattern, we sequenced the polymorphic poly‐Q locus of the Clock gene in 521 female great tits Parus major, which were selected based on possession of extreme breeding phenotypes. In total, we identified five alleles with one allele accounting for 96% of allelic diversity in the sample set. Overall variability at the poly‐Q locus was very low, and the spatial distribution of Clock alleles across Wytham was highly homogenous. Our data further provide no evidence for a connection between Clock genotype and reproductive timing phenotype in female great tits; further, we found no effect of Clock genotype on reproductive success. Hence, these results are in contrast to the pattern found for the sympatric blue tit population inhabiting the same woodlands, suggesting that phenotypic effects of Clock are not general in passerine birds.  相似文献   

17.
Molecular Biology Reports - Coronary artery disease (CAD) which is a complex cardiovascular disease is the leading cause of death worldwide. The changing prevalence of the disease in different...  相似文献   

18.
Abstract

Context: Variations in the fat mass and obesity-associated gene (FTO) has been associated with obesity in many populations, but the results are conflicting.

Objective: The aim of this study was to evaluate the effect of the rs9939609 polymorphism in the FTO gene on obesity risk and plasma leptin, adiponectin, insulin and lipid concentrations in Tunisians.

Materials and methods: Four hundred and ninety-four subjects with obesity and 334 non-obese participated in this study. The rs9939609 (T/A) genotype was determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.

Results: Significant differences in genotype frequencies were observed between cases and controls. In the separate analysis by gender, the association between the AA genotype and obesity was statistically significant in women but not in men. After stratification by obesity class this association remains only with obesity class III.

Discussion: Our study is in agreement with studies on Caucasian, Portuguese and Cebu Filipino populations where a gender-specific association was found between rs9939609 polymorphism and obesity. It is also in agreement with studies on Mexican, Spanish and European populations, where an association was found with obesity class III.

Conclusion: The rs9939609 polymorphism of FTO gene is associated with obesity, especially obesity class III in women.  相似文献   

19.
Obesity is associated with increased susceptibility to dyslipidemia, insulin resistance, and hypertension, a combination of traits that comprise the traditional definition of the metabolic syndrome. Recent evidence suggests that obesity is also associated with the development of nonalcoholic fatty liver disease (NAFLD). Despite the high prevalence of obesity and its related conditions, their etiologies and pathophysiology remains unknown. Both genetic and environmental factors contribute to the development of obesity and NAFLD. Previous genetic analysis of high-fat, diet-induced obesity in C57BL/6J (B6) and A/J male mice using a panel of B6-ChrA/J/NaJ chromosome substitution strains (CSSs) demonstrated that 17 CSSs conferred resistance to high-fat, diet-induced obesity. One of these CSS strains, CSS-17, which is homosomic for A/J-derived chromosome 17, was analyzed further and found to be resistant to diet-induced steatosis. In the current study we generated seven congenic strains derived from CCS-17, fed them either a high-fat, simple-carbohydrate (HFSC) or low-fat, simple-carbohydrate (LFSC) diet for 16 weeks and then analyzed body weight and related traits. From this study we identified several quantitative trait loci (QTLs). On a HFSC diet, Obrq13 protects against diet-induced obesity, steatosis, and elevated fasting insulin and glucose levels. On the LFSC diet, Obrq13 confers lower hepatic triglycerides, suggesting that this QTL regulates liver triglycerides regardless of diet. Obrq15 protects against diet-induced obesity and steatosis on the HFSC diet, and Obrq14 confers increased final body weight and results in steatosis and insulin resistance on the HFSC diet. In addition, on the LFSC diet, Obrq 16 confers decreased hepatic triglycerides and Obrq17 confers lower plasma triglycerides on the LFSC diet. These congenic strains provide mouse models to identify genes and metabolic pathways that are involved in the development of NAFLD and aspects of diet-induced metabolic syndrome. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. C. A. Millward and L. C. Burrage contributed equally to this work.  相似文献   

20.
It is an open question whether phenomena such as phenotypic robustness to mutation evolve as adaptations or are simply an inherent property of genetic systems. As a case study, we examine this question with regard to dominance in metabolic physiology. Traditionally the conclusion that has been derived from Metabolic Control Analysis has been that dominance is an inevitable property of multi-enzyme systems and hence does not require an evolutionary explanation. This view is based on a mathematical result commonly referred to as the flux summation theorem. However it is shown here that for mutations involving finite changes (of any magnitude) in enzyme concentration, the flux summation theorem can only hold in a very restricted set of conditions. Using both analytical and simulation results we show that for finite changes, the summation theorem is only valid in cases where the relationship between genotype and phenotype is linear and devoid of non-linearities in the form of epistasis. Such an absence of epistasis is unlikely in metabolic systems. As an example, we show that epistasis can arise in scenarios where we assume generic non-linearities such as those caused by enzyme saturation. In such cases dominance levels can be modified by mutations that affect saturation levels. The implication is that dominance is not a necessary property of metabolic systems and that it can be subject to evolutionary modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号