首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pre-exposure of growing bacterial populations to low concentrations of hydrogen peroxide (H2O2) protects a repair-proficient strain of Escherichia coli (AB1157) very strongly and a rec A strain (AB2463) to a lesser extent from the lethal action of subsequent exposure to 5 mM H2O2 in buffer. The conditioning procedure also protects AB1157 and AB2463 from the toxic effects of UVA (334 nm, 365 nm) radiation but not UVB (313 nm) or UVC (254 nm) radiations. Pretreatment of growing AB1157 with low fluences of UVA (365 nm) radiation leads to the induction of resistance to H2O2, an effect which apparently requires protein synthesis. As in a previous report, the treatment of growing populations with low concentrations of H2O2 enhanced the resistance of such populations to H2O2 challenge in the growth medium. However, when H2O2 (+ Cu2+)-treated bacteriophage were subsequently infected into AB1157 under optimal inducing conditions, their resistance was not enhanced relative to infection into untreated bacteria. We conclude that the primary mechanism for the inducible effects observed could be the induction of H2O2 scavenging activity by low concentrations of H2O2 either introduced into the growth medium directly or produced by low fluences of UVA irradiation.  相似文献   

2.
Copper, zinc-superoxide dismutase (CuZn-SOD) is a cytosolic, antioxidant enzyme that scavenges potentially damaging superoxide radical (()O(2)(-)). Under the proper conditions, CuZn-SOD also catalyzes the oxidation and reduction of certain small molecules. Here, we demonstrate that increased exposure to hydrogen peroxide (H(2)O(2)), a by-product of the ()O(2)(-) scavenging reaction, dramatically increases the ability of CuZn-SOD to oxidize melatonin and reduce S-nitrosoglutathione (GSNO). After a 15min in vitro incubation with CuZn-SOD and 1mM H(2)O(2), 76% of the melatonin was oxidized, compared to 52% with 0.25mM H(2)O(2), and just 9% without H(2)O(2). Pre-incubation with 1mM H(2)O(2) resulted in a 100% increase in the rate of GSNO breakdown by CuZn-SOD in the presence of glutathione (GSH) compared to untreated CuZn-SOD. Collectively, these data suggest that even small increases in intracellular H(2)O(2) levels may result in the oxidation and/or reduction of small molecules critical for proper cellular function.  相似文献   

3.
Monofunctional catalases (EC 1.11.1.6) and catalase-peroxidases (KatGs, EC 1.11.1.7) have neither sequence nor structural homology, but both catalyze the dismutation of hydrogen peroxide (2H2O2 --> 2H2O + O2). In monofunctional catalases, the catalatic mechanism is well-characterized with conventional compound I [oxoiron(IV) porphyrin pi-cation radical intermediate] being responsible for hydrogen peroxide oxidation. The reaction pathway in KatGs is not as clearly defined, and a comprehensive rapid kinetic and spectral analysis of the reactions of KatGs from three different sources (Synechocystis PCC 6803, Burkholderia pseudomallei, and Mycobacterium tuberculosis) with peroxoacetic acid and hydrogen peroxide has focused on the pathway. Independent of KatG, but dependent on pH, two low-spin forms dominated in the catalase cycle with absorbance maxima at 415, 545, and 580 nm at low pH and 418 and 520 nm at high pH. By contrast, oxidation of KatGs with peroxoacetic acid resulted in intermediates with different spectral features that also differed among the three KatGs. Following the rate of H2O2 degradation by stopped-flow allowed the linking of reaction intermediate species with substrate availability to confirm which species were actually present during the catalase cycle. Possible reaction intermediates involved in H2O2 dismutation by KatG are discussed.  相似文献   

4.
Generation of superoxide anion and hydrogen peroxide during enzymatic oxidation of 3-(3,4-dihydroxyphenyl)-DL-alanine (DOPA) has been studied. The ability of DOPA to react with O2*- has been revealed. EPR spectrum of DOPA-semiquinone formed upon oxidation of DOPA by O2*- was observed using spin stabilization technique of ortho-semiquinones by Zn2+ ions. Simultaneously, the oxidation of DOPA by O2*- was found to produce hydrogen peroxide (H2O2). The analysis of H2O2 formation upon oxidation of DOPA by O2*- using 1-hydroxy-3-carboxy-pyrrolidine (CP-H), and SOD as competitive reagents for superoxide provides consistent values of the rate constant for the reaction between DOPA and O2*- being equal to (3.4+/-0.6)x10(5) M(-1) s(-1).The formation of H2O2 during enzymatic oxidation of DOPA by phenoloxidase (PO) has been shown. The H2O2 production was found to be SOD-sensitive. The inhibition of H2O2 production by SOD was about 25% indicating that H2O2 is produced both from superoxide anion and via two-electron reduction of oxygen at the enzyme. The attempts to detect superoxide production during enzymatic oxidation of DOPA using a number of spin traps failed apparently due to high value of the rate constant for DOPA interaction with O2*-.  相似文献   

5.
Mechanism of oxyhemoglobin oxidation induced by hydrogen peroxide]   总被引:1,自引:0,他引:1  
The process of oxyhemoglobin oxidation initiated by hydrogen peroxide in low (10(-7) M) concentrations was investigated. It was found, that H2O2 in this concentration is able to induce the process of chain oxidation of oxyhemoglobin to methemoglobin. The following observations indicate that the process is essentially the chain reaction: 1) The amount of the methemoglobin in haem groups, produced in the reaction, exceed by 20 times the quantity of hydrogen, added initially, to induce the oxidation. 2) Catalase stopped this process at any stage of the reaction. This fact implies that the chain process involves generation of new molecules of H2O2 in the course of oxidation of oxyhemoglobin. The chain reaction proceeded only in the presence of oxygen. But if oxygen was introduced into hemoglobin solution, preincubated with H2O2 in vacuum, than again the oxidation of hemoglobin developed. Apparently, H2O2 in low concentrations appears, mainly, as an inductor of the oxyhemoglobin autooxidation.  相似文献   

6.
Kinetics of spontaneous chemiluminescence (CL) and electrochemiluminescence (ECL) and resistance of blood serum and its protein, lipid and carbohydrate components under the effect of X-rays (3 to 1622 Gy) and the indirect effect of radiation initiated by the addition of hydrogen peroxide (1.5 X 10(-5)-1.5%) was studied to estimate the contribution of each of the serum components to cumulative changes in the kinetics of free radical oxidation initiated by the effect of radiation. There was a parametric dependence between the absorbed dose, the rate of ECL and the resistance of blood serum and its components. As the absorbed dose or hydrogen peroxide concentration increased ECL contribution to the cumulative luminescence signal regularly decreased. Changes in CL and ECL of blood serum induced by ionizing radiation and H2O2 were qualitatively similar. The kinetics of free radical oxidation of blood serum initiated by irradiation was determined integrally (according to CL and ECL parameters) by a complex of changes in its components.  相似文献   

7.
By the use of EPR spectroscopy, it has been shown that acyl nitroso compounds can act as spin traps for short-lived radicals with the formation of acyl aminoxyl radicals. The reaction was studied for the system benzohydroxamicacid[Ph-C (= O)N(H)] - dimethyl sulfoxide - hydrogen peroxide. The acyl aminoxyl radicals appeared almost immediately when the reaction mixture was irradiated in situ in the EPR cavity with UV light. The trapping reaction involved two photochemical reactions, i.e. the oxidation of the hydroxamic acid to the acyl nitroso compound Ph-C (= O)NO, and the formation of methyl radicals from dimethyl sulfoxide. The EPR spectra are superpositions of the spectra of two species of acyl aminoxyl radicals, i.e. the radicals Ph-C (= O)N(O·)H formed by oxidation of the parent benzohydrox-amic acid, and the radical Ph-C (= O)N(O·)CH3, formed by trapping of methyl radicals.  相似文献   

8.
Peroxidase activities of RNAs containing 2'-amino groups, which were selected as aptamers binding to N-methylmesoporphyrin IX, were investigated. Some clones promoted the oxidation reaction of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with hydrogen peroxide (H(2)O(2)) in the presence of iron(III)-protoporphyrin (hemin), whereas others did not. Each of them had a different substrate specificity. One of the active clones promoted the oxidation of o-dianisidine and beta-nicotinamide adenine dinucleotide reduced form (NADH) with H(2)O(2) 5 and 15 times faster than hemin only, respectively. On the other hand, one clone that was inactive on oxidation of ABTS exhibited the same level of activity on oxidation of o-dianisidine as that shown by the clone active on ABTS but no activity on NADH. By in vitro selection, we can produce various types of peroxidase-like non-natural RNAs.  相似文献   

9.
In the presence of iodide (I-, 10 mM) and hydrogen peroxide in a large excess (H2O2, 0.1-10 mM) catalytic amounts of lactoperoxidase (2 nM) are very rapidly irreversibly inactivated without forming compound III (cpd III). In contrast, in the absence of I- cpd III is formed and inactivation proceeds very slowly. Increasing the enzyme concentration up to the micromolar range significantly accelerates the rate of inactivation. The present data reveal that irreversible inactivation of the enzyme involves cleavage of the prosthetic group and liberation of heme iron. The rate of enzyme destruction is well correlated with the production of molecular oxygen (O2), which originates from the oxidation of excess H2O2. Since H2O2 and O2 per se do not affect the heme moiety of the peroxidase, we suggest that the damaging species may be a primary intermediate of the H2O2 oxidation, such as oxygen in its excited singlet state (1 delta gO2), superoxide radicals (O-.2), or consequently formed hydroxyl radicals (OH.).  相似文献   

10.
K Yusa  K Shikama 《Biochemistry》1987,26(21):6684-6688
Hydrogen peroxide, one of the potent oxidants in muscle tissues, can induce very rapid oxidation of oxymyoglobin (MbO2) to metmyoglobin (metMb) with an apparent rate constant of 7.5 X 10(4) h-1 M-1 (i.e., 20.8 s-1 M-1) over the wide pH range of 5.5-10.2 in 0.1 M buffer at 25 degrees C. Its molecular mechanism, however, is quite different from that of the autoxidation of MbO2 to metMb. Kinetic analysis has revealed that the hydrogen peroxide oxidation proceeds through the formation of ferryl-Mb(IV) from deoxy-Mb(II), which is in equilibrium with MbO2, by a two-equivalent oxidation with H2O2. Once the ferryl species is formed, it reacts rapidly with another deoxy-Mb(II) in a bimolecular fashion so as to yield 2 mol of metMb(III). Under physiological conditions, the rate-determining step was the oxidation of the deoxy species by H2O2, its rate constant being estimated to be on the order of 3.6 X 10(3) s-1 M-1 at 25 degrees C. These findings leads us to the view that a good supply of dioxygen provides rather an important defense against the oxidation of myoglobin with hydrogen peroxide in cardiac and skeletal muscle tissues.  相似文献   

11.
Lee K 《Journal of bacteriology》1999,181(9):2719-2725
Naphthalene dioxygenase (NDO) is a multicomponent enzyme system that oxidizes naphthalene to (+)-cis-(1R,2S)-1,2-dihydroxy-1, 2-dihydronaphthalene with consumption of O2 and two electrons from NAD(P)H. In the presence of benzene, NADH oxidation and O2 utilization were partially uncoupled from substrate oxidation. Approximately 40 to 50% of the consumed O2 was detected as hydrogen peroxide. The rate of benzene-dependent O2 consumption decreased with time, but it was partially increased by the addition of catalase in the course of the O2 consumption by NDO. Detailed experiments showed that the total amount of O2 consumed and the rate of benzene-induced O2 consumption increased in the presence of hydrogen peroxide-scavenging agents, and further addition of the terminal oxygenase component (ISPNAP) of NDO. Kinetic studies showed that ISPNAP was irreversibly inactivated in the reaction that contained benzene, but the inactivation was relieved to a high degree in the presence of catalase and partially relieved in the presence of 0.1 mM ferrous ion. Benzene- and naphthalene-reacted ISPNAP gave almost identical visible absorption spectra. In addition, hydrogen peroxide added at a range of 0.1 to 0.6 mM to the reaction mixtures inactivated the reduced ISPNAP containing mononuclear iron. These results show that hydrogen peroxide released during the uncoupling reaction acts both as an inhibitor of benzene-dependent O2 consumption and as an inactivator of ISPNAP. It is proposed that the irreversible inactivation of ISPNAP occurs by a Fenton-type reaction which forms a strong oxidizing agent, hydroxyl radicals (. OH), from the reaction of hydrogen peroxide with ferrous mononuclear iron at the active site. Furthermore, when [14C]benzene was used as the substrate, cis-benzene 1,2-dihydrodiol formed by NDO was detected. This result shows that NDO also couples a trace amount of benzene to both O2 consumption and NADH oxidation.  相似文献   

12.
Hydrogen peroxide production during experimental protein glycation   总被引:11,自引:0,他引:11  
The accumulation of hydrogen peroxide (H2O2) during incubations of protein with glucose (experimental glycation) has previously been too low for direct measurement although it is suggested to be the precursor of protein-damaging hydroxylating agents. We have thus developed a simple H2O2-measuring technique which relies upon the rapid peroxide-mediated oxidation of Fe2+ to Fe3+ (catalysed by sorbitol) under acidic conditions followed by reaction of the latter cation with the dye, xylenol orange. We have used the method to demonstrate that incubation mixtures of protein and glucose generates nanomolar levels of hydrogen peroxide in the presence of protein under physiological conditions of pH and temperature.  相似文献   

13.
Functions of amine oxidases in plant development and defence   总被引:2,自引:0,他引:2  
Copper amine oxidases and flavin-containing amine oxidases catalyse the oxidative de-amination of polyamines, which are ubiquitous compounds essential for cell growth and proliferation. Far from being only a means of degrading cellular polyamines and, thus, contributing to polyamine homeostasis, amine oxidases participate in important physiological processes through their reaction products. In plants, the production of hydrogen peroxide (H(2)O(2)) deriving from polyamine oxidation has been correlated with cell wall maturation and lignification during development as well as with wound-healing and cell wall reinforcement during pathogen invasion. As a signal molecule, H(2)O(2) derived from polyamine oxidation mediates cell death, the hypersensitive response and the expression of defence genes. Furthermore, aminoaldehydes and 1,3-diaminopropane from polyamine oxidation are involved in secondary metabolite synthesis and abiotic stress tolerance.  相似文献   

14.
The oxidation of reduced cytochrome c oxidase by hydrogen peroxide was investigated with stopped-flow methods. It was reported by us previously (A.C.F. Gorren, H. Dekker and R. Wever (1986) Biochim. Biophys. Acta 852, 81-92) that at low H2O2 concentrations cytochrome a is oxidised simultaneously with cytochrome a3, but that at higher H2O2 concentrations the oxidation of cytochrome a is slower than that of cytochrome a3. We now report that for high peroxide concentrations (10-45 mM) the oxidation rate of cytochrome a increased linearly with the concentration of H2O2 (k = 700 M-1.S-1). Upon extrapolation to zero H2O2 concentration an intercept with a value of 16 s-1 (at 20 degrees C and pH 7.4) was found. A reaction sequence is described to explain these results; according to this model the rate constant (16 S-1) at zero H2O2 concentration represents the true value of the rate of electron transfer from cytochrome a to cytochrome a3 when the a3-CuB site is oxidised and unligated. However, when a complex of hydrogen peroxide with oxidised cytochrome a3 is formed, this rate is strongly enhanced. The slope (700 M-1.S-1) would then represent the rate of cytochrome a3(3+)-H2O2 complex formation. From experiments in which the pH was varied, we conclude that the reaction of H2O2 with cytochrome a3(2+) is independent of pH, whereas the electron-transfer rate from cytochrome a to cytochrome a3 gradually decreases with increasing pH. From the temperature dependence we could calculate values of 23 kJ.mol-1 and 45 kJ.mol-1 for the activation energies of the oxidations by H2O2 of cytochrome a3(2+) and cytochrome a2+, respectively. The similarity of the values that were obtained for cytochrome a oxidation both with H2O2 and with O2 as the electron acceptor suggests that the reactions share the same mechanism. In 2H2O the reactions studied decreased in rate. For the reaction of 2H2O2 with reduced cytochrome a3 in 2H2O, a small effect was found (15% decrease in rate constant). However, the internal electron-transfer rate from cytochrome a to cytochrome a3 decreased by 50%, Our results suggest that the internal electron transfer is associated with proton translocation.  相似文献   

15.
The methylene blue photosensitized oxidation of cysteine sulfinic acid is investigated. Enhancement of the oxygen consumption rate in deuterium oxide suggests the involvement of singlet oxygen ((1)O(2)) in oxidation. Addition of the (1)O(2) quencher azide produced an unusual enhancement of the oxidation rate of all the sulfinates assayed. It is assumed that azide works as a one-electron carrier between (1)O(2) and the sulfur compounds. Analyses of the products indicate that the photochemical oxidation of cysteine sulfinic acid proceeds through two simultaneous mechanisms. The Type II (singlet oxygen) mechanism is responsible for oxidation of the sulfinic group to the sulfonic group with production of cysteic acid, stable to the photooxidation system, whereas the Type I (electron transfer) mechanism is involved in the degradation of cysteine sulfinic acid to acetaldehyde. Other products detected were ammonia, sulfate, and hydrogen peroxide which account for the degradation of cysteine sulfinic acid and for the excess of oxygen consumption detected during the oxidative reaction.  相似文献   

16.
Treatment of the Cu(II)-Fe(III) derivative of pig allantoic fluid acid phosphatase with hydrogen peroxide caused irreversible inactivation of the enzyme and loss of half of the intensity of the visible absorption spectrum. Phosphate, a competitive inhibitor, protected against this inactivation, suggesting that it occurred as a result of a reaction at the active site. The native Fe(II)-Fe(III) enzyme was irreversibly inactivated by H2O2 to a much smaller extent than the Cu(II)-Fe(III) derivative, whereas the Zn(II)-Fe(III) derivative was stable to H2O2 treatment. The rates of inactivation of the Cu(II)-Fe(III) and Fe(II)-Fe(III) enzymes in the presence of H2O2 were increased by addition of ascorbate. These results suggest involvement of a Fenton-type reaction, generating hydroxyl radicals which react with essential active site groups. Experiments carried out on the Fe(II)-Fe(III) enzyme showed that irreversible inactivation by H2O2 in the presence of ascorbate obeyed pseudo first-order kinetics. A plot of kobs for this reaction against H2O2 concentration (at saturating ascorbate) was hyperbolic, giving kobs(max) = 0.41 +/- 0.025 min-1 and S0.5(H2O2) = 1.16 +/- 0.18 mM. A kinetic scheme is presented to describe the irreversible inactivation, involving hydroxyl radical generation by reaction of H2O2 with Fe(II)-Fe(III) enzyme, reduction of the product Fe(III)-Fe(III) enzyme by ascorbate and reaction of hydroxyl radical with an essential group in the enzyme.  相似文献   

17.
The reactor choice is crucial when designing a process where inactivation of the biocatalyst is a problem. The main bottleneck for the chemo-enzymatic epoxidation has been found to be enzyme inactivation by the hydrogen peroxide, H(2) O(2) , substrate. In the work reported here, the effect of reaction parameters on the reaction performance have been investigated and used to establish suitable operating strategies to minimize the inactivation of the enzyme, using rapeseed methyl ester (RME) as a substrate in a solvent-free system. The use of a controlled fed-batch reactor for maintaining H(2) O(2) concentration at 1.5 M resulted in increased productivity, up to 76 grams of product per gram of biocatalyst with higher retention of enzyme activity. Further investigation included a multistage design that separated the enzymatic reaction and the saturation of the RME substrate with H(2) O(2) into different vessels. This setup showed that the reaction rate as well as enzyme inactivation is strongly dependent on the H(2) O(2) concentration. A 20-fold improvement in enzymatic efficiency is required for reaching an economically feasible process. This will require a combination of enzyme modification and careful process design.  相似文献   

18.
To help settle controversy as to whether the chelating agent diethylenetriaminepentaacetate (DTPA) supports or prevents hydroxyl radical production by superoxide/hydrogen peroxide systems, we have reinvestigated the question by spectroscopic, kinetic, and thermodynamic analyses. Potassium superoxide in DMSO was found to reduce Fe(III)DTPA. The rate constant for autoxidation of Fe(II)DTPA was found (by electron paramagnetic resonance spectroscopy) to be 3.10 M-1 s-1, which leads to a predicted rate constant for reduction of Fe(III)DTPA by superoxide of 5.9 x 10(3) M-1 s-1 in aqueous solution. This reduction is a necessary requirement for catalytic production of hydroxyl radicals via the Fenton reaction and is confirmed by spin-trapping experiments using DMPO. In the presence of Fe(III)DTPA, the xanthine/xanthine oxidase system generates hydroxyl radicals. The reaction is inhibited by both superoxide dismutase and catalase (indicating that both superoxide and hydrogen peroxide are required for generation of HO.). The generation of hydroxyl radicals (rather than oxidation side-products of DMPO and DMPO adducts) is attested to by the trapping of alpha-hydroxethyl radicals in the presence of 9% ethanol. Generation of HO. upon reaction of H2O2 with Fe(II)DTPA (the Fenton reaction) can be inhibited by catalase, but not superoxide dismutase. The data strongly indicate that iron-DTPA can catalyze the Haber-Weiss reaction.  相似文献   

19.
Bacterioferritin (EcBFR) of Escherichia coli is an iron-mineralizing hemoprotein composed of 24 identical subunits, each containing a dinuclear metal-binding site known as the "ferroxidase center." The chemistry of Fe(II) binding and oxidation and Fe(III) hydrolysis using H(2)O(2) as oxidant was studied by electrode oximetry, pH-stat, UV-visible spectrophotometry, and electron paramagnetic resonance spin trapping experiments. Absorption spectroscopy data demonstrate the oxidation of two Fe(II) per H(2)O(2) at the ferroxidase center, thus avoiding hydroxyl radical production via Fenton chemistry. The oxidation reaction with H(2)O(2) corresponds to [Fe(II)(2)-P](Z) + H(2)O(2) --> [Fe(III)(2)O-P](Z) + H(2)O, where [Fe(II)(2)-P](Z) represents a diferrous ferroxidase center complex of the protein P with net charge Z and [Fe(III)(2)O-P](Z) a micro-oxo-bridged diferric ferroxidase complex. The mineralization reaction is given by 2Fe(2+) + H(2)O(2) + 2H(2)O --> 2FeOOH((core)) + 4H(+), where two Fe(II) are again oxidized by one H(2)O(2). Hydrogen peroxide is shown to be an intermediate product of dioxygen reduction when O(2) is used as the oxidant in both the ferroxidation and mineralization reactions. Most of the H(2)O(2) produced from O(2) is rapidly consumed in a subsequent ferroxidase reaction with Fe(II) to produce H(2)O. EPR spin trapping experiments show that the presence of EcBFR greatly attenuates the production of hydroxyl radical during Fe(II) oxidation by H(2)O(2), consistent with the ability of the bacterioferritin to facilitate the pairwise oxidation of Fe(II) by H(2)O(2), thus avoiding odd electron reduction products of oxygen and therefore oxidative damage to the protein and cellular components through oxygen radical chemistry.  相似文献   

20.
Lactoperoxidase (LPO) is found in mucosal surfaces and exocrine secretions including milk, tears, and saliva and has physiological significance in antimicrobial defense which involves (pseudo-)halide oxidation. LPO compound III (a ferrous-dioxygen complex) is known to be formed rapidly by an excess of hydrogen peroxide and could participate in the observed catalase-like activity of LPO. The present anaerobic stopped-flow kinetic analysis was performed in order to elucidate the catalytic mechanism of LPO and the kinetics of compound III formation by probing the reactivity of ferrous LPO with hydrogen peroxide and molecular oxygen. It is shown that ferrous LPO heterolytically cleaves hydrogen peroxide forming water and oxyferryl LPO (compound II). The two-electron oxidation reaction follows second-order kinetics with the apparent bimolecular rate constant being (7.2+/-0.3) x 10(4) M(-1) s(-1) at pH 7.0 and 25 degrees C. The H2O2-mediated conversion of compound II to compound III follows also second-order kinetics (220 M(-1) s(-1) at pH 7.0 and 25 degrees C). Alternatively, compound III is also formed by dioxygen binding to ferrous LPO at an apparent bimolecular rate constant of (1.8+/-0.2) x 10(5) M(-1) s(-1). Dioxygen binding is reversible and at pH 7.0 the dissociation constant (K(D)) of the oxyferrous form is 6 microM. The rate constant of dioxygen dissociation from compound III is higher than conversion of compound III to ferric LPO, which is not affected by the oxygen concentration and follows a biphasic kinetics. A reaction cycle including the redox intermediates compound II, compound III, and ferrous LPO is proposed, which explains the observed (pseudo-)catalase activity of LPO in the absence of one-electron donors. The relevance of these findings in LPO catalysis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号