首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We report here the results of the preliminary characterization of the monolayer obtained both by self-assembling and microcontact printing of a di-alkyl sulfide nitronyl nitroxide derivative, 11-decyl sulfanyl-undecanyl nitronyl nitroxide of which we describe the synthesis. The sulfide unit has been introduced in order to allow the grafting of the molecule to the gold surface as well as to improve the stability of the organic radical with respect to different grafting agents like thiols, whereas the two long alkyl chains have been introduced to enhance the packing order of the molecules in a self assembled monolayer structure.X-band ESR was used to demonstrate the persistence of the paramagnetic character of the radical in the self-assembled monolayers, and to study its relatively large mobility. The microcontact printed monolayer was characterized by AFM, suggesting a non-negligible mobility of the molecules on the surfaces and a strong tilting of the molecules on the surface.  相似文献   

2.
This paper describes a convenient methodology for patterning substrates for cell culture that allows the positions and dimensions of attached cells to be controlled. The method uses self-assembled monolayers (SAMs) of terminally substituted alkanethiolates (R(CH2)11–15S−) adsorbed on optically transparent films of gold or silver to control the properties of the substrates. SAMs terminated in methyl groups adsorb protein and SAMs terminated in oligo(ethylene glycol) groups resist entirely the adsorption of protein. This methodology uses microcontact printing (μCP)—an experimentally simple, nonphotolithographic process—to pattern the formation of SAMs at the micrometer scale; μCP uses an elastomeric stamp having at its surface a pattern in relief to transfer an alkanethiol to a surface of gold or silver in the same pattern. Patterned SAMs having hydrophobic, methyl-terminated lines 10, 30, 60, and 90 μm in width and separated by protein-resistant regions 120 μm in width were prepared and coated with fibronectin; the protein adsorbed only to the methyl-terminated regions. Bovine capillary endothelial cells attached only to the fibronectin-coated, methyl-terminated regions of the patterned SAMs. The cells remained attached to the SAMs and confined to the pattern of underlying SAMs for at least 5–7 days. Because the substrates are optically transparent, cells could be visualized by inverted microscopy and by fluorescence microscopy after fixing and staining with fluorescein-labeled phalloidin.  相似文献   

3.
The formation of chemisorbed monolayers of yeast cytochrome c on both uncharged polar and nonpolar soft surfaces of organic self-assembled monolayers (SAM) on solid inorganic substrates was followed in situ by polarized total internal reflection fluorescence. Two types of nonpolar surfaces and one type of uncharged polar surface were used. The first type of nonpolar surface contained only thiol endgroups, while the other was composed of a mixture of thiol and methyl endgroups. The uncharged polar surface was provided by the mixture of thiol and hydroxyl endgroups. The thiol endgroups were used to form a covalent disulfide bond with the unique surface-exposed cysteine residue 102 of the protein. The mean tilt angle of the protein's zinc-substituted porphyrin was found to be 41 degrees and 50 degrees for the adsorption onto the nonpolar and uncharged polar surfaces, respectively. The distribution widths for the pure thiol and the thiol/methyl and thiol/hydroxyl mixtures were 9 degrees, 1 degrees, and 18 degrees, respectively. The high degree of the orientational order and good stability achieved for the protein monolayer on the mixed thiol/methyl endgroup SAM makes this system very attractive for studies of both intramolecular and intermolecular electron transfer processes.  相似文献   

4.
Yeast cytochrome c (YCC) can be covalently tethered to, and thereby vectorially oriented on, the soft surface of a mixed endgroup (e.g., -CH3/-SH = 6:1, or -OH/-SH = 6:1) organic self-assembled monolayer (SAM) chemisorbed on the surface of a silicon substrate utilizing a disulfide linkage between its unique surface cysteine residue and a thiol endgroup. Neutron reflectivities from such monolayers of YCC on Fe/Si or Fe/Au/Si multilayer substrates with H2O versus D2O hydrating the protein monolayer at 88% relative humidity for the nonpolar SAM (-CH3/-SH = 6:1 mixed endgroups) surface and 81% for the uncharged-polar SAM (-OH/-SH = 6:1mixed endgroups) surface were collected on the NG1 reflectometer at NIST. These data were analyzed using a new interferometric phasing method employing the neutron scattering contrast between the Si and Fe layers in a single reference multilayer structure and a constrained refinement approach utilizing the finite extent of the gradient of the profile structures for the systems. This provided the water distribution profiles for the two tethered protein monolayers consistent with their electron density profile determined previously via x-ray interferometry (Chupa et al., 1994).  相似文献   

5.
X-ray interferometry/holography was applied to meridional x-ray diffraction data to determine uniquely the profile structures of a single monolayer of an integral membrane protein and a peripheral membrane protein, each tethered to the surface of a solid inorganic substrate. Bifunctional, organic self-assembled monolayers (SAMs) were utilized to tether the proteins to the surface of Ge/Si multilayer substrates, fabricated by molecular beam epitaxy, to facilitate the interferometric/holographic x-ray structure determination. The peripheral membrane protein yeast cytochrome c was covalently tethered to the surface of a sulfhydryl-terminated 11-siloxyundecanethiol SAM via a disulfide linkage with residue 102. The detergent-solubilized, photosynthetic reaction center integral membrane protein was electrostatically tethered to the surface of an analogous amine-terminated SAM. Optical absorption measurements performed on these two tethered protein monolayer systems were consistent with the x-ray diffraction results indicating the reversible formation of densely packed single monolayers of each fully functional membrane protein on the surface of the respective SAM. The importance of utilizing the organic self-assembled monolayers (as opposed to Langmuir-Blodgett) lies in their ability to tether specifically both soluble peripheral membrane proteins and detergent-solubilized integral membrane proteins. The vectorial orientations of the cytochrome c and the reaction center molecules were readily distinguishable in the profile structure of each monolayer at a spatial resolution of 7 A.  相似文献   

6.
Naturally occurring hemin cofactor has been functionalized to introduce two terminal alkyne groups. This modified hemin has been successfully covalently attached to mixed self-assembled monolayers of alkanethiols and azide-terminated alkanethiols on gold electrodes using a Cu(I)-catalyzed 1,3-cycloaddition reaction. However these hemin-modified electrodes could not be used to reconstitute apomyoglobin on gold electrodes owing to the hydrophobicity of the alkane thiol self-assembled monolayer. Modification of existing techniques allowed covalent attachment of alkyne-terminated electroactive species onto mixed monolayers of azidothiols and carboxylatoalkanethiols on electrodes using the same Cu(I)-catalyzed 1,3-cycloaddition reaction. Apomyoglobin could be reconstituted using the hemin covalently attached to these hydrophilic electrodes. The electrochemical data, UV-vis absorption data, surface-enhanced resonance Raman spectroscopy data, and atomic force microscopy data indicate the presence of these modified myoglobin proteins on these electrodes. The direct attachment of the heme cofactor of these modified myoglobin proteins to the electrode allows fast electron transfer to the heme center from the electrode and affords efficient O(2)-reducing bioelectrodes under physiological conditions.  相似文献   

7.
Protein farnesyltransferase catalyzes the modification of protein substrates containing specific carboxyl-terminal Ca(1)a(2)X motifs with a 15-carbon farnesyl group. The thioether linkage is formed between the cysteine of the Ca(1)a(2)X motif and C1 of the farnesyl group. Protein substrate specificity is essential to the function of the enzyme and has been exploited to find enzyme-specific inhibitors for antitumor therapies. In this work, we investigate the thiol substrate specificity of protein farnesyltransferase by demonstrating that a variety of nonpeptidic thiol compounds, including glutathione and dithiothreitol, are substrates. However, the binding energy of these thiols is decreased 4-6 kcal/mol compared to a peptide derived from the carboxyl terminus of H-Ras. Furthermore, for these thiol substrates, both the farnesylation rate constant and the apparent magnesium affinity decrease significantly. Surprisingly, no correlation is observed between the pH-independent log(k(max)) and the thiol pK(a); model nucleophilic reactions of thiols display a Br?nsted correlation of approximately 0.4. These data demonstrate that zinc-sulfur coordination is a primary criterion for classification as a FTase substrate, but other interactions between the peptide and the FTase.isoprenoid complex provide significant enhancement of binding and catalysis. Finally, these results suggest that the mechanism of FTase provides in vivo selectivity for the farnesylation of protein substrates even in the presence of high concentrations of intracellular thiols.  相似文献   

8.
We present here a two-step strategy for micropatterning proteins on a substrate to control neurite growth in culture. First, conventional microcontact printing is used to prepare a micropattern of protein A, which binds the Fc fragment of immunoglobulins. Then, a chimeric protein, consisting of the extracellular domain of a guidance protein recombinantly linked to the Fc fragment of IgG (prepared using conventional molecular techniques), is applied from solution. The chimeric protein binds to the patterned protein A, taking on its geometric pattern. Using this method, we have micropatterned the extracellular domain of the cell adhesion molecule, L1 (as an L1-Fc chimera) and demonstrated that it retains its ability to selectively guide axonal growth. L1-Fc micropatterned on a background of poly-l-lysine resulted in selective growth of the axons on the micropattern, whereas the somata and dendrites were unresponsive. Substrates bearing simultaneous micropatterns of L1-Fc and poly-l-lysine on a background of untreated glass were also created. Using this approach, cell body position was controlled by manipulating the dimensions of the poly-l-lysine pattern, and the dendrites were constrained to the poly-l-lysine pattern, while the axons grew preferentially on L1-Fc. The two-step microcontact printing method allows preparation of substrates that contain guidance proteins in geometric patterns with resolution of 1 m. This method should be broadly applicable to many classes of proteins.  相似文献   

9.
In this study, bone cells were successfully cultured into a micropatterned network with dimensions close to that of in vivo osteocyte networks using microcontact printing and self-assembled monolyers (SAMs). The optimal geometric parameters for the formation of these networks were determined in terms of circle diameters and line widths. Bone cells patterned in these networks were also able to form gap junctions with each other, shown by immunofluorescent staining for the gap junction protein connexin 43, as well as the transfer of gap-junction permeable calcein-AM dye. We have demonstrated for the first time, that the intracellular calcium response of a single bone cell indented in this bone cell network, can be transmitted to neighboring bone cells through multiple calcium waves. Furthermore, the propagation of these calcium waves was diminished with increased cell separation distance. Thus, this study provides new experimental data that support the idea of osteocyte network memory of mechanical loading similar to memory in neural networks.  相似文献   

10.
A method for tethering proteins to solid surfaces has been utilized to form vectorially oriented monolayers of the detergent-solubilized integral membrane protein Ca(2+) -ATPase from the sarcoplasmic reticulum (SR). Bifunctional, organic self-assembled monolayers (SAMs) possessing "headgroup" binding specificity for the substrate and "endgroup" binding specificity for the enzyme were utilized to tether the enzyme to the substrate. Specifically, an amine-terminated 11-siloxyundecaneamine SAM was found to bind the Ca(2+)-ATPase primarily electrostatically. The Ca(2+)-ATPase was labeled with the fluorescent probe 5-(2-[(iodoacetyl)amino]ethyl)aminonaphthalene-1-sulfonic acid before monolayer formation. Consequently, fluorescence measurements performed on amine-terminated SAM/enzyme monolayers formed on quartz substrates served to establish the nature of protein binding. Formation of the monolayers on inorganic multilayer substrates fabricated by molecular beam epitaxy made it possible to use x-ray interferometry to determine the profile structure for the system, which was proved correct by x-ray holography. The profile structures established the vectorial orientation of the Ca(2+)-ATPase within these monolayers, to a spatial resolution of approximately 12 A. Such vectorially oriented monolayers of detergent-solubilized Ca(2+)-ATPase from SR make possible a wide variety of correlative structure/function studies, which would serve to elucidate the mechanism of Ca(2+) transport by this enzyme.  相似文献   

11.
Biomimetic micro-patterned surfaces of three S-layer (fusion) proteins, wild type (SbpA), enhanced green fluorescence protein (SbpA-EGFP) and streptavidin (SbpA-STV), were built by microcontact printing of poly-L-lysine grafted polyethylene glycol (PLL-g-PEG). The functionality of the adsorbed proteins was studied with atomic force microscopy and fluorescence microscopy. Atomic force microscopy (AFM) measurements showed that wild-type SbpA recrystallized on PLL-g-PEG free areas, while fluorescent properties of SbpA-EGFP and the interaction of SbpA-streptavidin heterotetramers with biotin were not affected due to the adsorption on the micro patterned substrates.  相似文献   

12.
Square wave voltammetry for the reduction of 2,4,6-trinitrotoluene (TNT) was measured in 100 mM potassium phosphate buffer (pH 8) at gold electrodes modified with self-assembled monolayers (SAMs) containing either an alkane thiol or aromatic ring thiol structures. At 15 Hz, the electrochemical sensitivity (µA/ppm) was similar for all SAMs tested. However, at 60 Hz, the SAMs containing aromatic structures had a greater sensitivity than the alkane thiol SAM. In fact, the alkane thiol SAM had a decrease in sensitivity at the higher frequency. When comparing the electrochemical response between simulations and experimental data, a general trend was observed in which most of the SAMs had similar heterogeneous rate constants within experimental error for the reduction of TNT. This most likely describes a rate limiting step for the reduction of TNT. However, in the case of the alkane SAM at higher frequency, the decrease in sensitivity suggests that the rate limiting step in this case may be electron tunneling through the SAM. Our results show that SAMs containing aromatic rings increased the sensitivity for the reduction of TNT when higher frequencies were employed and at the same time suppressed the electrochemical reduction of dissolved oxygen.  相似文献   

13.
The anchoring of thiolated single-stranded DNA (HS-ssDNA) monolayers onto platinum substrates was investigated by sum-frequency generation spectroscopy. Different buffer solutions were used for the preparation of the adlayers. Vibrational fingerprints in the 2700-3100 cm(-1) spectral range showed the intercalation of Tris/EDTA (TE) buffer molecules within the HS-ssDNA self-assembled monolayer. Buffer contribution to SFG can be quenched either by using SFG inactive molecules like KH(2)PO(4)/K(2)HPO(4)/NaCl (PBS) or by repeated rinsing of the DNA layer with pure water. Comparing the SFG spectra of HS-ssDNA and mercaptohexanol (MCH), which had been self-assembled onto the same substrate, enabled us to infer ordering of the anchor arms and strong disordering of the DNA strands of HS-ssDNA monolayers self-assembled on platinum.  相似文献   

14.
The patterning of cardiac myocytes on a micron scale ( approximately 5 microm) was achieved by microcontact printing of fibronectin onto a hydrophobically pretreated glass substrate. The patterned cardiac myocytes conjugated with each other by forming a gap junction, as judged from the synchronized Ca(2+) transition over the pattern, and thus simultaneously contracted. The dynamic change of the Ca(2+) concentration within the patterned tissue was analyzed quantitatively during successive contraction and relaxation using a Nipkow-type high-speed confocal microscope.  相似文献   

15.
We describe the use of a microfabricated cell culture substrate, consisting of a uniform array of closely spaced, vertical, elastomeric microposts, to study the effects of substrate rigidity on cell function. Elastomeric micropost substrates are micromolded from silicon masters comprised of microposts of different heights to yield substrates of different rigidities. The tips of the elastomeric microposts are functionalized with extracellular matrix through microcontact printing to promote cell adhesion. These substrates, therefore, present the same topographical cues to adherent cells while varying substrate rigidity only through manipulation of micropost height. This protocol describes how to fabricate the silicon micropost array masters (~2 weeks to complete) and elastomeric substrates (3 d), as well as how to perform cell culture experiments (1-14 d), immunofluorescence imaging (2 d), traction force analysis (2 d) and stem cell differentiation assays (1 d) on these substrates in order to examine the effect of substrate rigidity on stem cell morphology, traction force generation, focal adhesion organization and differentiation.  相似文献   

16.
The in vitro assembly of neuronal networks with control over cell position and connectivity is a fascinating approach not only for topics in basic neuroscience research but also in diverse applications such as biosensors and tissue engineering. We grew rat embryonic cortical neurons on patterned substrates created by microcontact printing. Polystyrene was used as a cell repellent background, onto which a grid pattern of physiological proteins was applied. We printed laminin and a mixture of extracellular matrix proteins and additionally both systems mixed with polylysine. Attachment of cells to the pattern with high fidelity as well as the formation of chemical synapses between neighboring cells on the pattern could be observed in all four cases, but cell attachment was strongly increased on samples containing polylysine. Neurons grown on patterned substrates had a membrane capacity smaller than that of neurons on homogeneously coated controls, which we attributed to the geometrical restrictions, but did not differ either in resting membrane potential or in the quality of synapses they formed. We therefore believe that the cells attach and differentiate normally on the pattern and form functional, mature synapses following the predefined geometry.  相似文献   

17.
Long-chain acyl thioesters (thio wax esters) have been prepared in high (80% to more than 90%) yields by solvent-free esterification of fatty acids (lauric, myristic, palmitic and stearic acids) with long-chain thiols, such as decane thiol, dodecane thiol, tetradecane thiol and hexadecane thiol, catalysed by lipases from Candida antarctica (Novozym) and Rhizomucor miehei (Lipozyme) in the presence of a 0.4-nm molecular sieve. In the thioesterification reaction Novozym was a more effective biocatalyst than Lipozyme. The extent of thioesterification increased with increasing molar ratio of fatty acid to alkane thiol (1:1 to 3:1) and with temperature (40 °C compared to 60 °C), as well as with the amount of the enzyme preparation and the amount of 0.4-nm molecular sieve. Decreasing the chain length of the alkane thiol from C16 to C10 also increased the extent of thioesterification. Lipase-catalysed solvent-free transthioesterification of fatty acid methyl esters with alkane thiols was less effective for the preparation of acyl thioesters than was thioesterification of fatty acids with alkane thiols. In transthioesterification, Lipozyme was slightly more effective as a biocatalyst than Novozym. Received: 3 September 1998 / Received revision: 18 November 1998 / Accepted: 21 November 1998  相似文献   

18.
Ultra thin film of photosensitive polyimide having benzene and sulfonyloxyimide moieties in the main chain was prepared using a Langmuir-Blodgett (LB) technique, and then micro array pattern of the polyimide LB film on a gold substrate was obtained by deep UV lithographic technique. In order to array cytochrome c molecules along the micro-patterned gold substrate, the well-characterized monolayer of cytochrome c was immobilized with a mixed monolayer of 11-mercaptoundecanoic acid (11-MUDA) and decanethiol. The redox activity and electron transfer between cytochrome c molecular center and gold electrode interface for the self-assembled cytochrome c monolayer were investigated by cyclic voltammetry measurement. Biomolecular photodiode consisting of cytochrome c and green fluorescent protein (GFP) onto the patterned gold substrate was fabricated by self-assembly process. The integration and morphology of cytochrome c and GFP were studied from the measurements of atomic force microscopy (AFM) and fluorescence emission. Especially, current-voltage characteristics of the protein multilayers were investigated by scanning tunneling microscopy (STM) and its application in biomolecular photodiode was also examined.  相似文献   

19.
Here we describe new methodology that allows for direct microcontact printing of octadecyltrichlorosilane onto glass coverslips followed by backfilling with an ethylene glycol terminated trichloroalkane silane; this produces patterns with regions that promote and prevent protein adsorption and allow for control of cell growth.  相似文献   

20.
Technologies for fabricating functional tissue architectures by patterning cells precisely are highly desirable for tissue engineering. Although several cell patterning methods such as microcontact printing and lithography have been developed, these methods require specialized surfaces to be used as substrates, the fabrication of which is time consuming. In the present study, we demonstrated a simple and rapid cell patterning technique, using magnetite nanoparticles and magnetic force, which enables us to allocate cells on arbitrary surfaces. Magnetite cationic liposomes (MCLs) developed in our previous study were used to magnetically label the target cells. When steel plates placed on a magnet were positioned under a cell culture surface, the magnetically labeled cells lined on the surface where the steel plate was positioned. Patterned lines of single cells were achieved by adjusting the number of cells seeded, and complex cell patterns (curved, parallel, or crossing patterns) were successfully fabricated. Since cell patterning using magnetic force may not limit the property of culture surfaces, human umbilical vein endothelial cells (HUVECs) were patterned on Matrigel, thereby forming patterned capillaries. These results suggest that the novel cell patterning methodology, which uses MCLs, is a promising approach for tissue engineering and studying cell-cell interactions in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号