首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Identification of disease-causing genes among a large number of candidates is a fundamental challenge in human disease studies. However, it is still time-consuming and laborious to determine the real disease-causing genes by biological experiments. With the advances of the high-throughput techniques, a large number of protein-protein interactions have been produced. Therefore, to address this issue, several methods based on protein interaction network have been proposed. In this paper, we propose a shortest path-based algorithm, named SPranker, to prioritize disease-causing genes in protein interaction networks. Considering the fact that diseases with similar phenotypes are generally caused by functionally related genes, we further propose an improved algorithm SPGOranker by integrating the semantic similarity of GO annotations. SPGOranker not only considers the topological similarity between protein pairs in a protein interaction network but also takes their functional similarity into account. The proposed algorithms SPranker and SPGOranker were applied to 1598 known orphan disease-causing genes from 172 orphan diseases and compared with three state-of-the-art approaches, ICN, VS and RWR. The experimental results show that SPranker and SPGOranker outperform ICN, VS, and RWR for the prioritization of orphan disease-causing genes. Importantly, for the case study of severe combined immunodeficiency, SPranker and SPGOranker predict several novel causal genes.  相似文献   

2.
A fundamental challenge in human health is the identification of disease-causing genes. Recently, several studies have tackled this challenge via a network-based approach, motivated by the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein or functional interactions. However, most of these approaches use only local network information in the inference process and are restricted to inferring single gene associations. Here, we provide a global, network-based method for prioritizing disease genes and inferring protein complex associations, which we call PRINCE. The method is based on formulating constraints on the prioritization function that relate to its smoothness over the network and usage of prior information. We exploit this function to predict not only genes but also protein complex associations with a disease of interest. We test our method on gene-disease association data, evaluating both the prioritization achieved and the protein complexes inferred. We show that our method outperforms extant approaches in both tasks. Using data on 1,369 diseases from the OMIM knowledgebase, our method is able (in a cross validation setting) to rank the true causal gene first for 34% of the diseases, and infer 139 disease-related complexes that are highly coherent in terms of the function, expression and conservation of their member proteins. Importantly, we apply our method to study three multi-factorial diseases for which some causal genes have been found already: prostate cancer, alzheimer and type 2 diabetes mellitus. PRINCE''s predictions for these diseases highly match the known literature, suggesting several novel causal genes and protein complexes for further investigation.  相似文献   

3.
In complex diseases, various combinations of genomic perturbations often lead to the same phenotype. On a molecular level, combinations of genomic perturbations are assumed to dys-regulate the same cellular pathways. Such a pathway-centric perspective is fundamental to understanding the mechanisms of complex diseases and the identification of potential drug targets. In order to provide an integrated perspective on complex disease mechanisms, we developed a novel computational method to simultaneously identify causal genes and dys-regulated pathways. First, we identified a representative set of genes that are differentially expressed in cancer compared to non-tumor control cases. Assuming that disease-associated gene expression changes are caused by genomic alterations, we determined potential paths from such genomic causes to target genes through a network of molecular interactions. Applying our method to sets of genomic alterations and gene expression profiles of 158 Glioblastoma multiforme (GBM) patients we uncovered candidate causal genes and causal paths that are potentially responsible for the altered expression of disease genes. We discovered a set of putative causal genes that potentially play a role in the disease. Combining an expression Quantitative Trait Loci (eQTL) analysis with pathway information, our approach allowed us not only to identify potential causal genes but also to find intermediate nodes and pathways mediating the information flow between causal and target genes. Our results indicate that different genomic perturbations indeed dys-regulate the same functional pathways, supporting a pathway-centric perspective of cancer. While copy number alterations and gene expression data of glioblastoma patients provided opportunities to test our approach, our method can be applied to any disease system where genetic variations play a fundamental causal role.  相似文献   

4.
The low prevalence rate of orphan diseases (OD) requires special combined efforts to improve diagnosis, prevention, and discovery of novel therapeutic strategies. To identify and investigate relationships based on shared genes or shared functional features, we have conducted a bioinformatic-based global analysis of all orphan diseases with known disease-causing mutant genes. Starting with a bipartite network of known OD and OD-causing mutant genes and using the human protein interactome, we first construct and topologically analyze three networks: the orphan disease network, the orphan disease-causing mutant gene network, and the orphan disease-causing mutant gene interactome. Our results demonstrate that in contrast to the common disease-causing mutant genes that are predominantly nonessential, a majority of orphan disease-causing mutant genes are essential. In confirmation of this finding, we found that OD-causing mutant genes are topologically important in the protein interactome and are ubiquitously expressed. Additionally, functional enrichment analysis of those genes in which mutations cause ODs shows that a majority result in premature death or are lethal in the orthologous mouse gene knockout models. To address the limitations of traditional gene-based disease networks, we also construct and analyze OD networks on the basis of shared enriched features (biological processes, cellular components, pathways, phenotypes, and literature citations). Analyzing these functionally-linked OD networks, we identified several additional OD-OD relations that are both phenotypically similar and phenotypically diverse. Surprisingly, we observed that the wiring of the gene-based and other feature-based OD networks are largely different; this suggests that the relationship between ODs cannot be fully captured by the gene-based network alone.  相似文献   

5.
We performed a systematic, large-scale analysis of human protein complexes comprising gene products implicated in many different categories of human disease to create a phenome-interactome network. This was done by integrating quality-controlled interactions of human proteins with a validated, computationally derived phenotype similarity score, permitting identification of previously unknown complexes likely to be associated with disease. Using a phenomic ranking of protein complexes linked to human disease, we developed a Bayesian predictor that in 298 of 669 linkage intervals correctly ranks the known disease-causing protein as the top candidate, and in 870 intervals with no identified disease-causing gene, provides novel candidates implicated in disorders such as retinitis pigmentosa, epithelial ovarian cancer, inflammatory bowel disease, amyotrophic lateral sclerosis, Alzheimer disease, type 2 diabetes and coronary heart disease. Our publicly available draft of protein complexes associated with pathology comprises 506 complexes, which reveal functional relationships between disease-promoting genes that will inform future experimentation.  相似文献   

6.
Zhang L  Li X  Tai J  Li W  Chen L 《PloS one》2012,7(6):e39542
Predicting candidate genes using gene expression profiles and unbiased protein-protein interactions (PPI) contributes a lot in deciphering the pathogenesis of complex diseases. Recent studies showed that there are significant disparities in network topological features between non-disease and disease genes in protein-protein interaction settings. Integrated methods could consider their characteristics comprehensively in a biological network. In this study, we introduce a novel computational method, based on combined network topological features, to construct a combined classifier and then use it to predict candidate genes for coronary artery diseases (CAD). As a result, 276 novel candidate genes were predicted and were found to share similar functions to known disease genes. The majority of the candidate genes were cross-validated by other three methods. Our method will be useful in the search for candidate genes of other diseases.  相似文献   

7.

Background

Prioritizing genetic variants is a challenge because disease susceptibility loci are often located in genes of unknown function or the relationship with the corresponding phenotype is unclear. A global data-mining exercise on the biomedical literature can establish the phenotypic profile of genes with respect to their connection to disease phenotypes. The importance of protein-protein interaction networks in the genetic heterogeneity of common diseases or complex traits is becoming increasingly recognized. Thus, the development of a network-based approach combined with phenotypic profiling would be useful for disease gene prioritization.

Results

We developed a random-set scoring model and implemented it to quantify phenotype relevance in a network-based disease gene-prioritization approach. We validated our approach based on different gene phenotypic profiles, which were generated from PubMed abstracts, OMIM, and GeneRIF records. We also investigated the validity of several vocabulary filters and different likelihood thresholds for predicted protein-protein interactions in terms of their effect on the network-based gene-prioritization approach, which relies on text-mining of the phenotype data. Our method demonstrated good precision and sensitivity compared with those of two alternative complex-based prioritization approaches. We then conducted a global ranking of all human genes according to their relevance to a range of human diseases. The resulting accurate ranking of known causal genes supported the reliability of our approach. Moreover, these data suggest many promising novel candidate genes for human disorders that have a complex mode of inheritance.

Conclusion

We have implemented and validated a network-based approach to prioritize genes for human diseases based on their phenotypic profile. We have devised a powerful and transparent tool to identify and rank candidate genes. Our global gene prioritization provides a unique resource for the biological interpretation of data from genome-wide association studies, and will help in the understanding of how the associated genetic variants influence disease or quantitative phenotypes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-315) contains supplementary material, which is available to authorized users.  相似文献   

8.
Identifying rare variants that contribute to complex diseases is challenging because of the low statistical power in current tests comparing cases with controls. Here, we propose a novel and powerful rare variants association test based on the deviation of the observed mutation burden of a gene in cases from a baseline predicted by a weighted recursive truncated negative-binomial regression (RUNNER) on genomic features available from public data. Simulation studies show that RUNNER is substantially more powerful than state-of-the-art rare variant association tests and has reasonable type 1 error rates even for stratified populations or in small samples. Applied to real case-control data, RUNNER recapitulates known genes of Hirschsprung disease and Alzheimer''s disease missed by current methods and detects promising new candidate genes for both disorders. In a case-only study, RUNNER successfully detected a known causal gene of amyotrophic lateral sclerosis. The present study provides a powerful and robust method to identify susceptibility genes with rare risk variants for complex diseases.  相似文献   

9.
Genome-wide techniques such as microarray analysis, Serial Analysis of Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS), linkage analysis and association studies are used extensively in the search for genes that cause diseases, and often identify many hundreds of candidate disease genes. Selection of the most probable of these candidate disease genes for further empirical analysis is a significant challenge. Additionally, identifying the genes that cause complex diseases is problematic due to low penetrance of multiple contributing genes. Here, we describe a novel bioinformatic approach that selects candidate disease genes according to their expression profiles. We use the eVOC anatomical ontology to integrate text-mining of biomedical literature and data-mining of available human gene expression data. To demonstrate that our method is successful and widely applicable, we apply it to a database of 417 candidate genes containing 17 known disease genes. We successfully select the known disease gene for 15 out of 17 diseases and reduce the candidate gene set to 63.3% (±18.8%) of its original size. This approach facilitates direct association between genomic data describing gene expression and information from biomedical texts describing disease phenotype, and successfully prioritizes candidate genes according to their expression in disease-affected tissues.  相似文献   

10.
基于功能一致性利用蛋白质互作网络挖掘潜在的疾病致病基因,对于了解疾病致病机理和改进临床治疗至关重要.基于基因功能一致性和其在蛋白质互作网络中的拓扑属性将基因与疾病之间建立关联,对疾病风险位点内的基因进行了致病风险预测,并通过GO及KEGG功能富集分析方法进一步筛选,预测出新的致病基因.预测出了51个新的冠心病致病基因,分析发现大部分基因参与了冠心病的致病过程.为疾病基因的挖掘提出一个新的思路,从而有助于复杂疾病致病机理的研究.  相似文献   

11.
A number of genetic studies have suggested numerous susceptibility genes for dental caries over the past decade with few definite conclusions. The rapid accumulation of relevant information, along with the complex architecture of the disease, provides a challenging but also unique opportunity to review and integrate the heterogeneous data for follow-up validation and exploration. In this study, we collected and curated candidate genes from four major categories: association studies, linkage scans, gene expression analyses, and literature mining. Candidate genes were prioritized according to the magnitude of evidence related to dental caries. We then searched for dense modules enriched with the prioritized candidate genes through their protein-protein interactions (PPIs). We identified 23 modules comprising of 53 genes. Functional analyses of these 53 genes revealed three major clusters: cytokine network relevant genes, matrix metalloproteinases (MMPs) family, and transforming growth factor-beta (TGF-β) family, all of which have been previously implicated to play important roles in tooth development and carious lesions. Through our extensive data collection and an integrative application of gene prioritization and PPI network analyses, we built a dental caries-specific sub-network for the first time. Our study provided insights into the molecular mechanisms underlying dental caries. The framework we proposed in this work can be applied to other complex diseases.  相似文献   

12.
The prioritization of candidate disease-causing genes is a fundamental challenge in the post-genomic era. Current state of the art methods exploit a protein-protein interaction (PPI) network for this task. They are based on the observation that genes causing phenotypically-similar diseases tend to lie close to one another in a PPI network. However, to date, these methods have used a static picture of human PPIs, while diseases impact specific tissues in which the PPI networks may be dramatically different. Here, for the first time, we perform a large-scale assessment of the contribution of tissue-specific information to gene prioritization. By integrating tissue-specific gene expression data with PPI information, we construct tissue-specific PPI networks for 60 tissues and investigate their prioritization power. We find that tissue-specific PPI networks considerably improve the prioritization results compared to those obtained using a generic PPI network. Furthermore, they allow predicting novel disease-tissue associations, pointing to sub-clinical tissue effects that may escape early detection.  相似文献   

13.
Disease gene identification by using graph kernels and Markov random fields   总被引:1,自引:0,他引:1  
Genes associated with similar diseases are often functionally related. This principle is largely supported by many biological data sources, such as disease phenotype similarities, protein complexes, protein-protein interactions, pathways and gene expression profiles. Integrating multiple types of biological data is an effective method to identify disease genes for many genetic diseases. To capture the gene-disease associations based on biological networks, a kernel-based MRF method is proposed by combining graph kernels and the Markov random field (MRF) method. In the proposed method, three kinds of kernels are employed to describe the overall relationships of vertices in five biological networks, respectively, and a novel weighted MRF method is developed to integrate those data. In addition, an improved Gibbs sampling procedure and a novel parameter estimation method are proposed to generate predictions from the kernel-based MRF method. Numerical experiments are carried out by integrating known gene-disease associations, protein complexes, protein-protein interactions, pathways and gene expression profiles. The proposed kernel-based MRF method is evaluated by the leave-one-out cross validation paradigm, achieving an AUC score of 0.771 when integrating all those biological data in our experiments, which indicates that our proposed method is very promising compared with many existing methods.  相似文献   

14.
Identifying candidate genes related to complex diseases or traits and mapping their relationships require a system-level analysis at a cellular scale. The objective of the present study is to systematically analyze the complex effects of interrelated genes and provide a framework for revealing their relationships in association with a specific disease (asthma in this case). We observed that protein-protein interaction (PPI) networks associated with asthma have a power-law connectivity distribution as many other biological networks have. The hub nodes and skeleton substructure of the result network are consistent with the prior knowledge about asthma pathways, and also suggest unknown candidate target genes associated with asthma, including GNB2L1, BRCA1, CBL, and VAV1. In particular, GNB2L1 appears to play a very important role in the asthma network through frequent interactions with key proteins in cellular signaling. This network-based approach represents an alternative method for analyzing the complex effects of candidate genes associated with complex diseases and suggesting a list of gene drug targets. The full list of genes and the analysis details are available in the following online supplementary materials: http://biosoft.kaist.ac.kr:8080/resources/asthma_ppi.  相似文献   

15.
MOTIVATION: Most of diseases are caused by a set of gene defects, which occur in a complex association. The association scheme of expressed genes can be modelled by genetic networks. Genetic networks are efficiently facilities to understand the dynamic of pathogenic processes by modelling molecular reality of cell conditions. In this sense a genetic network consists of first, a set of genes of specified cells, tissues or species and second, causal relations between these genes determining the functional condition of the biological system, i. e. under disease. A relation between two genes will exist if they both are directly or indirectly associated with disease [8]. Our goal is to characterize diseases (especially autoimmune diseases like chronic pancreatitis CP, multiple sclerosis MS, rheumatoid arthritis RA) by genetic networks generated by a computer system. We want to introduce this practice as a bioinformatic approach for finding targets.  相似文献   

16.
The autophagy-lysosomal pathway (ALP) regulates cell homeostasis and plays a crucial role in human diseases, such as lysosomal storage disorders (LSDs) and common neurodegenerative diseases. Therefore, the identification of DNA sequence variations in genes involved in this pathway and their association with human diseases would have a significant impact on health. To this aim, we developed Lysoplex, a targeted next-generation sequencing (NGS) approach, which allowed us to obtain a uniform and accurate coding sequence coverage of a comprehensive set of 891 genes involved in lysosomal, endocytic, and autophagic pathways. Lysoplex was successfully validated on 14 different types of LSDs and then used to analyze 48 mutation-unknown patients with a clinical phenotype of neuronal ceroid lipofuscinosis (NCL), a genetically heterogeneous subtype of LSD. Lysoplex allowed us to identify pathogenic mutations in 67% of patients, most of whom had been unsuccessfully analyzed by several sequencing approaches. In addition, in 3 patients, we found potential disease-causing variants in novel NCL candidate genes. We then compared the variant detection power of Lysoplex with data derived from public whole exome sequencing (WES) efforts. On average, a 50% higher number of validated amino acid changes and truncating variations per gene were identified. Overall, we identified 61 truncating sequence variations and 488 missense variations with a high probability to cause loss of function in a total of 316 genes. Interestingly, some loss-of-function variations of genes involved in the ALP pathway were found in homozygosity in the normal population, suggesting that their role is not essential. Thus, Lysoplex provided a comprehensive catalog of sequence variants in ALP genes and allows the assessment of their relevance in cell biology as well as their contribution to human disease.  相似文献   

17.
18.
Although there has been great success in identifying disease genes for simple, monogenic Mendelian traits, deciphering the genetic mechanisms involved in complex diseases remains challenging. One major approach is to identify configurations of interacting factors such as single nucleotide polymorphisms (SNPs) that confer susceptibility to disease. Traditional methods, such as the multiple dimensional reduction method and the combinatorial partitioning method, provide good tools to decipher such interactions amid a disease population with a single genetic cause. However, these traditional methods have not managed to resolve the issue of genetic heterogeneity, which is believed to be a very common phenomenon in complex diseases. There is rarely prior knowledge of the genetic heterogeneity of a disease, and traditional methods based on estimation over the entire population are unlikely to succeed in the presence of heterogeneity. We present a novel Boosted Generative Modeling (BGM) approach for structure-model the interactions leading to diseases in the context of genetic heterogeneity. Our BGM method bridges the ensemble and generative modeling approaches to genetic association studies under a case-control design. Generative modeling is employed to model the interaction network configuration and the causal relationships, while boosting is used to address the genetic heterogeneity problem. We perform our method on simulation data of complex diseases. The results indicate that our method is capable of modeling the structure of interaction networks among disease-susceptible loci and of addressing genetic heterogeneity issues where the traditional methods, such as multiple dimensional reduction method, fail to apply. Our BGM method provides an exploratory tool that identifies the variables (e.g., disease-susceptible loci) that are likely to correlate and contribute to the disease.  相似文献   

19.
Pan W 《Human genetics》2008,124(3):225-234
For genome-wide association studies, it has been increasingly recognized that the popular locus-by-locus search for DNA variants associated with disease susceptibility may not be effective, especially when there are interactions between or among multiple loci, for which a multi-loci search strategy may be more productive. However, even if computationally feasible, a genome-wide search over all possible multiple loci requires exploring a huge model space and making costly adjustment for multiple testing, leading to reduced statistical power. On the other hand, there are accumulating data suggesting that protein products of many disease-causing genes tend to interact with each other, or cluster in the same biological pathway. To incorporate this prior knowledge and existing data on gene networks, we propose a gene network-based method to improve statistical power over that of the exhaustive search by giving higher weights to models involving genes nearby in a network. We use simulated data under realistic scenarios, including a large-scale human protein–protein interaction network and 23 known ataxia-causing genes, to demonstrate potential gain by our proposed method when disease-genes are clustered in a network.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号