首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem cells are maintained in an undifferentiated state by interacting with a microenvironment known as the "niche," which is comprised of various secreted and membrane proteins. Our goal was to identify niche molecules participating in stem cell-stem cell and/or stem cell-supporting cell interactions. Here, we isolated genes encoding secreted and membrane proteins from purified male germ stem cells using a signal sequence trap approach. Among the genes identified, we focused on the junctional adhesion molecule 4 (JAM4), an immunoglobulin type cell adhesion molecule. JAM4 protein was actually localized to the plasma membrane in male germ cells. JAM4 expression was downregulated as cells differentiated in both germ cell and hematopoietic cell lineages. To analyze function in vivo, we generated JAM4-deficient mice. Histological analysis of testes from homozygous nulls did not show obvious abnormalities, nor did liver and kidney tissues, both of which strongly express JAM4. The numbers of hematopoietic stem cells in bone marrow were indistinguishable between wild-type and mutant mice, as was male germ cell development. These results suggest that JAM4 is expressed in stem cells and progenitor cells but that other cell adhesion molecules may substitute for JAM4 function in JAM4-deficient mice both in male germ cell and hematopoietic lineages.  相似文献   

2.
3.
Payer B  Lee JT  Namekawa SH 《Human genetics》2011,130(2):265-280
X-chromosome inactivation is an epigenetic hallmark of mammalian development. Chromosome-wide regulation of the X-chromosome is essential in embryonic and germ cell development. In the male germline, the X-chromosome goes through meiotic sex chromosome inactivation, and the chromosome-wide silencing is maintained from meiosis into spermatids before the transmission to female embryos. In early female mouse embryos, X-inactivation is imprinted to occur on the paternal X-chromosome, representing the epigenetic programs acquired in both parental germlines. Recent advances revealed that the inactive X-chromosome in both females and males can be dissected into two elements: repeat elements versus unique coding genes. The inactive paternal X in female preimplantation embryos is reactivated in the inner cell mass of blastocysts in order to subsequently allow the random form of X-inactivation in the female embryo, by which both Xs have an equal chance of being inactivated. X-chromosome reactivation is regulated by pluripotency factors and also occurs in early female germ cells and in pluripotent stem cells, where X-reactivation is a stringent marker of naive ground state pluripotency. Here we summarize recent progress in the study of X-inactivation and X-reactivation during mammalian reproduction and development as well as in pluripotent stem cells.  相似文献   

4.
5.
6.
Acquisition of the pluripotent state coincides with epigenetic reprogramming of the X-chromosome. Female embryonic stem cells are characterized by the presence of two active X-chromosomes, cell differentiation by inactivation of one of the two Xs, and induced pluripotent stem cells by reactivation of the inactivated X-chromosome in the originating somatic cell. The tight linkage between X- and stem cell reprogramming occurs through pluripotency factors acting on noncoding genes of the X-inactivation center. This review article will discuss the latest advances in our understanding at the molecular level. Mouse embryonic stem cells provide a standard for defining the pluripotent ground state, which is characterized by low levels of the noncoding Xist RNA and the absence of heterochromatin marks on the X-chromosome. Human pluripotent stem cells, however, exhibit X-chromosome epigenetic instability that may have implications for their use in regenerative medicine. XIST RNA and heterochromatin marks on the X-chromosome indicate whether human pluripotent stem cells are developmentally ‘naïve’, with characteristics of the pluripotent ground state. X-chromosome status and determination thereof via noncoding RNA expression thus provide valuable benchmarks of the epigenetic quality of pluripotent stem cells, an important consideration given their enormous potential for stem cell therapy.  相似文献   

7.
8.
Outer dense fiber 2 (Odf2) is highly expressed in the testis where it encodes a major component of the outer dense fibers of the sperm flagellum. Furthermore, ODF2 protein has recently been identified as a widespread centrosomal protein. While the expression of Odf2 highlighted a potential role for this gene in male germ cell development and centrosome function, the in vivo function of Odf2 was not known. We have generated Odf2 knockout mice using an Odf2 gene trapped embryonic stem cell (ESC) line. Insertion of a gene trap vector into exon 9 resulted in a gene that encodes a severely truncated protein lacking a large portion of its predicted coil forming domains as well as both leucine zipper motifs that are required for protein-protein interactions with ODF1, another major component of the outer dense fibers. Although wild-type and heterozygous mice were recovered, no mice homozygous for the Odf2 gene trap insertion were recovered in an extended breeding program. Furthermore, no homozygous embryos were found at the blastocyst stage of embryonic development, implying a critical pre-implantation role for Odf2. We show that Odf2 is expressed widely in adults and is also expressed in the blastocyst stage of preimplantation development. These findings are in contrast with early studies reporting Odf2 expression as testis specific and suggest that embryonic Odf2 expression plays a critical role during preimplantation development in mice.  相似文献   

9.
Testicular teratomas result from anomalies in germ cell development during embryogenesis. In the 129 family of inbred strains of mice, teratomas initiate around embryonic day (E) 13.5 during the same developmental period in which female germ cells initiate meiosis and male germ cells enter mitotic arrest. Here, we report that three germ cell developmental abnormalities, namely continued proliferation, retention of pluripotency, and premature induction of differentiation, associate with teratoma susceptibility. Using mouse strains with low versus high teratoma incidence (129 versus 129-Chr19(MOLF/Ei)), and resistant to teratoma formation (FVB), we found that germ cell proliferation and expression of the pluripotency factor Nanog at a specific time point, E15.5, were directly related with increased tumor risk. Additionally, we discovered that genes expressed in pre-meiotic embryonic female and adult male germ cells, including cyclin D1 (Ccnd1) and stimulated by retinoic acid 8 (Stra8), were prematurely expressed in teratoma-susceptible germ cells and, in rare instances, induced entry into meiosis. As with Nanog, expression of differentiation-associated factors at a specific time point, E15.5, increased with tumor risk. Furthermore, Nanog and Ccnd1, genes with known roles in testicular cancer risk and tumorigenesis, respectively, were co-expressed in teratoma-susceptible germ cells and tumor stem cells, suggesting that retention of pluripotency and premature germ cell differentiation both contribute to tumorigenesis. Importantly, Stra8-deficient mice had an 88% decrease in teratoma incidence, providing direct evidence that premature initiation of the meiotic program contributes to tumorigenesis. These results show that deregulation of the mitotic-meiotic switch in XY germ cells contributes to teratoma initiation.  相似文献   

10.
11.
Nanog expression in mouse germ cell development   总被引:12,自引:0,他引:12  
  相似文献   

12.
Germ cells possess the unique ability to acquire totipotency during development in vivo as well as give rise to pluripotent stem cells under the appropriate conditions in vitro. Recent studies in which somatic cells were experimentally converted into pluripotent stem cells revealed that genes expressed in primordial germ cells (PGCs), such as Oct3/4, Sox2, and Lin28, are involved in this reprogramming. These findings suggest that PGCs may be useful for identifying factors that successfully and efficiently reprogram somatic cells into toti- and/or pluripotent stem cells. Here, we show that Blimp-1, Prdm14, and Prmt5, each of which is crucial for PGC development, have the potential to reprogram somatic cells into pluripotent stem cells. Among them, Prmt5 exhibited remarkable reprogramming of mouse embryonic fibroblasts into which Prmt5, Klf4, and Oct3/4 were introduced. The resulting cells exhibited pluripotent gene expression, teratoma formation, and germline transmission in chimeric mice, all of which were indistinguishable from those induced with embryonic stem cells. These data indicate that some of the factors that play essential roles in germ cell development are also active in somatic cell reprogramming.  相似文献   

13.
Formation of motile sperm in Drosophila melanogaster requires the coordination of processes such as stem cell division, mitotic and meiotic control and structural reorganization of a cell. Proper execution of spermatogenesis entails the differentiation of cells derived from two distinct embryonic lineages, the germ line and the somatic mesoderm. Through an analysis of homozygous viable and fertile enhancer detector lines, we have identified molecular markers for the different cell types present in testes. Some lines label germ cells or somatic cyst cells in a stage-specific manner during their differentiation program. These expression patterns reveal transient identities for the cyst cells that had not been previously recognized by morphological criteria. A marker line labels early stages of male but not female germ cell differentiation and proves useful in the analysis of germ line sex-determination. Other lines label the hub of somatic cells around which germ line stem cells are anchored. By analyzing the fate of the somatic hub in an agametic background, we show that the germ line plays some role in directing its size and its position in the testis. We also describe how marker lines enable us to identify presumptive cells in the embryonic gonadal mesoderm before they give rise to morphologically distinct cell types. Finally, this collection of marker lines will allow the characterization of genes expressed either in the germ line or in the soma during spermatogenesis.  相似文献   

14.
During normal embryonic development, mammalian germ cells use both cell migration and aggregation to form the primitive sex cords. Germ cells must be able to interact with their environment and each other to accomplish this; however, the molecular basis of early germ cell adhesion is not well characterized. Differential adhesion is also thought to occur in the adult seminiferous tubules, since germ cells move from the periphery to the lumen as they differentiate. In a screen for additional adhesion molecules expressed by the germ line, expression of the homophilic adhesion molecule, Ep-CAM, was identified in embryonic, neonatal and adult germ cells using immunocytochemistry and flow cytometry with an Ep-CAM-specific monoclonal antibody. At embryonic stages, germ cells were found to express Ep-CAM during migration at embryonic day 10.5 and early gonad assembly at embryonic day 12.5. Expression of Ep-CAM was also found on neonatal male and female germ cells. In the adult testis, Ep-CAM was detected only on spermatogonia, and was absent from more differentiated cells. Finally, embryonic stem cells were shown to express this receptor. It is proposed that Ep-CAM plays a role in the development of the germ line and the behaviour of totipotent cells.  相似文献   

15.
The germ cell lineage in the mouse is not predetermined but is established during gastrulation, in response to signalling molecules acting on a subset of epiblast cells that move through the primitive streak together with extra-embryonic mesoderm precursors. After migration to the site of the future gonads, germ cell sex determination is achieved, with germ cell phenotype in male and female embryos diverging. Evidence suggests that all germ cells spontaneously take the female pathway, entering prophase of the first meiotic division five or six days after the birth of the germ cell lineage, with the exception of those located in the embryonic testis, which exit the cell cycle in response to some inhibitory signal and remain in Go until after birth, when spermatogenesis begins. In culture, germ cells respond to certain growth factors by proliferating indefinitely. These immortalized embryonic germ (EG) cell lines are chromosomally stable and pluripotent, closely resembling the embryonic stem (ES) cell lines derived from blastocyst-stage embryos. Human EG and ES cell lines have recently been made, raising the hope that their differentiation could be directed to specific cell types, of value in the clinical treatment of degenerative diseases.  相似文献   

16.
Lewis X antigen (Le(X)) is a marker of embryonic stem cells, embryonal carcinoma cells and multipotential cells of early embryos in the mouse. Le(X) is carried by branched, high-molecular weight poly-N-acetyllactosamines (embryoglycan). While embryoglycan is present in human embryonal carcinoma cells, Le(X) is not expressed in human embryonic stem cells, embryonal carcinoma cells or inner cell mass cells. Instead, these cells express SSEA-3 and SSEA-4, both of which are carried by globo-series glycolipids. Le(X) is a marker of primordial germ cells or multipotential stem cells derived from primordial germ cells both in the mouse and human. In other species of vertebrates, Le(X) is widely expressed in early embryonic cells and primordial germ cells, but the mode of expression is not completely conserved among species. Le(X) is expressed in neural stem cells from both humans and mice. Hematopoietic stem cells are not reported to express the above carbohydrate markers. A marker of these cells is CD34, a membrane-bound sialomucin. Another sialomucin, CD164 (MGC-24v) is expressed in hemotopoietic progenitor cells. As a function of Le(X) in stem cells, the promotion of integrin action is proposed, based on analyses of glycoproteins with the marker, cDNA transfection experiments and the inhibitory effects of an anti-Le(X) antibody. Most probably, Le(X) antigen as well as poly-N-acetyllactosamines play roles in the interactions on the same membrane. On the other hand, O-linked oligosaccharides on CD34 and CD164 are probably involved in the regulation of cell adhesion and proliferation via intercellular recognition.  相似文献   

17.
RanBPM is a recently identified scaffold protein that links and modulates interactions between cell surface receptors and their intracellular signaling pathways. RanBPM has been shown to interact with a variety of functionally unrelated proteins; however, its function remains unclear. Here, we show that RanBPM is essential for normal gonad development as both male and female RanBPM(-/-) mice are sterile. In the mutant testis there was a marked decrease in spermatogonia proliferation during postnatal development. Strikingly, the first wave of spermatogenesis was totally compromised, as seminiferous tubules of homozygous mutant animals were devoid of post-meiotic germ cells. We determined that spermatogenesis was arrested around the late pachytene-diplotene stages of prophase I; surprisingly, without any obvious defect in chromosome synapsis. Interestingly, RanBPM deletion led to a remarkably quick disappearance of all germ cell types at around one month of age, suggesting that spermatogonia stem cells are also affected by the mutation. Moreover, in chimeric mice generated with RanBPM(-/-) embryonic stem cells all mutant germ cells disappeared by 3 weeks of age suggesting that RanBPM is acting in a cell-autonomous way in germ cells. RanBPM homozygous mutant females displayed a premature ovarian failure due to a depletion of the germ cell pool at the end of prophase I, as in males. Taken together, our results highlight a crucial role for RanBPM in mammalian gametogenesis in both genders.  相似文献   

18.
MicroRNAs (miRNAs) are a newly discovered, yet powerful mechanism for regulating protein expression via mRNA translational inhibition. Loss of all miRNA function within mice leads to embryonic lethality with a loss of the stem cell population in the epiblast and failure to form a primitive streak. These data suggest that miRNAs play a major role in embryonic development. As critical regulation of protein expression is also important for controlling the balance between self-renewal and differentiation in stem cells, the study of miRNAs within this model system is rapidly expanding. New data suggest that stem cells have discrete miRNA expression profiles, which may account for, or contribute to, the intrinsic stem cell properties of self-renewal and pluripotency. Specifically, miRNAs have been implicated in downregulation of cell cycle checkpoint proteins during germ stem cell division. Other data demonstrate that changes in miRNA expression can promote or inhibit stem or progenitor cell differentiation within different cell lineages, including hematopoietic cells, cardiomyocytes, myoblasts, and neural cells. In this review we detail the established functional roles of miRNAs in the embryonic and adult stem cell model systems. Finally, we explore new techniques that exploit endogenous miRNA processing and function for applications in basic and clinical research.  相似文献   

19.
Transplantation of germ cells from fertile donor mice to the testes of infertile recipient mice results in donor-derived spermatogenesis and transmission of the donor's genetic material to the offspring of recipient animals. Germ cell transplantation provides a bioassay to study the biology of male germ line stem cells, develop systems to isolate and culture spermatogonial stem cells, examine defects in spermatogenesis and treat male infertility. Although most widely studied in rodents, germ cell transplantation has been applied to larger mammals. In domestic animals including pigs, goats and cattle, as well as in primates, germ cells can be transplanted to a recipient testis by ultrasonographic-guided cannulation of the rete testis. Germ cell transplantation was successful between unrelated, immuno-competent pigs and goats, whereas transplantation in rodents requires syngeneic or immuno-compromised recipients. Genetic manipulation of isolated germ line stem cells and subsequent transplantation will result in the production of transgenic sperm. Transgenesis through the male germ line has tremendous potential in domestic animal species where embryonic stem cell technology is not available and current options to generate transgenic animals are inefficient. As an alternative to transplantation of isolated germ cells to a recipient testis, ectopic grafting of testis tissue from diverse mammalian donor species, including horses and primates, into a mouse host represents a novel possibility to study spermatogenesis, to investigate the effects of drugs with the potential to enhance or suppress male fertility, and to produce fertile sperm from immature donors. Therefore, transplantation of germ cells or xenografting of testis tissue are uniquely valuable approaches for the study, preservation and manipulation of male fertility in domestic animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号