首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The invention in 1986 of scanning force microscopy (SFM) provided a new and powerful tool for the investigation of biological structures. SFM yields a three-dimensional view at nanometer resolution of the surface topography associated with biological objects. The potential for imaging either macromolecules or biomolecules and cells under native (physiological) conditions is currently being exploited to obtain functional information at the molecular level. In addition, the forces involved in individual bimolecular interactions are being assessed under static and dynamic conditions. In this report we focus on the imaging capability of the SFM. The rather broad spectrum of applications represented is intended to orient the prospective user of biological SFM.  相似文献   

2.
Biomolecular force measurements and the atomic force microscope   总被引:3,自引:0,他引:3  
The atomic force microscope (AFM) is a surface-sensitive instrument capable of imaging biological samples at nanometer resolution in all environments including liquids. The sensitivity of the AFM cantilever, to forces in the pico Newton range, has been exploited to measure breakaway forces between biomolecules and to measure folding-unfolding forces within single proteins. By attaching specific antibodies to cantilevers the simultaneous imaging of target antigens and identification of antigen-antibody interactions have been demonstrated.  相似文献   

3.
The atomic force microscope (AFM) is a versatile instrument that can be used to image biological samples at nanometre resolution as well as to measure inter and intra-molecular forces in air and liquid environments. This review summarises the use of AFM applied to protein and peptide self-assembly systems involved in amyloid formation. The technical principles of the AFM are outlined and its advantages and disadvantages are highlighted and discussed in the context of the rapidly developing field of amyloid research.  相似文献   

4.
R Ho  J Y Yuan    Z Shao 《Biophysical journal》1998,75(2):1076-1083
Using a hard sphere model and numerical calculations, the effect of the hydration force between a conical tip and a flat surface in the atomic force microscope (AFM) is examined. The numerical results show that the hydration force remains oscillatory, even down to a tip apex of a single water molecule, but its lateral extent is limited to a size of a few water molecules. In general, the contribution of the hydration force is relatively small, but, given the small imaging force ( approximately 0.1 nN) typically used for biological specimens, a layer of water molecules is likely to remain "bound" to the specimen surface. This water layer, between the tip and specimen, could act as a "lubricant" to reduce lateral force, and thus could be one of the reasons for the remarkably high resolution achieved with contact-mode AFM. To disrupt this layer, and to have a true tip-sample contact, a probe force of several nanonewtons would be required. The numerical results also show that the ultimate apex of the tip will determine the magnitude of the hydration force, but that the averaged hydration pressure is independent of the radius of curvature. This latter conclusion suggests that there should be no penalty for the use of sharper tips if hydration force is the dominant interaction between the tip and the specimen, which might be realizable under certain conditions. Furthermore, the calculated hydration energy near the specimen surface compares well with experimentally determined values with an atomic force microscope, providing further support to the validity of these calculations.  相似文献   

5.
Polysaccharide helices in the atomic force microscope.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

6.
Imaging cells with the atomic force microscope   总被引:12,自引:0,他引:12  
Different types of cells have been imaged with the atomic force microscope. The morphology of the archaebacterium Halobacterium halobium in its dry state was revealed. On a leaf of the small Indian tree Lagerstroemia subcostata a stoma was imaged. The lower side of a water lily leaf was imaged in water showing features down to 12 nm. Finally, fixed red and white blood cells were imaged in buffer showing features down to 8 nm. The images demonstrate that atomic force microscopy can provide high-resolution images of cell surfaces under physiological conditions.  相似文献   

7.
The importance of forces in biology has been recognized for quite a while but only in the past decade have we acquired instrumentation and methodology to directly measure interactive forces at the level of single biological macromolecules and/or their complexes. This review focuses on force measurements performed with the atomic force microscope. A general introduction to the principle of action is followed by review of the types of interactions being studied, describing the main results and discussing the biological implications.  相似文献   

8.
Force modulation and phase sensitive detection was used to image soft surfaces with the atomic force microscope. This force modulation microscopy allows the simultaneous recording of images of the surface profile, the storage modulus, and the loss modulus of the sample. A theoretical treatment of the elastic tip-sample interaction is given. As examples, images of Langmuir-Blodgett films of a polymeric amphiphile and of a structured fatty acid are presented.  相似文献   

9.
The surfaces of two- and three-dimensional phi29 connector crystals were imaged in buffer solution by atomic force microscopy (AFM). Both topographies show a rectangular unit cell with dimensions of 16.5 nm x 16.5 nm. High resolution images of connectors from the two-dimensional crystal surface show two connectors per unit cell confirming the p42(1)2 symmetry. The height of the connector was estimated to be at least 7.6 nm, a value close to that found in previous studies using different techniques. The 12 subunits of the wide connector domain were clearly resolved and showed a right-handed vorticity. The channel running along the connector had a diameter of 3.7 nm in the wide domain, while it was 1.7 nm in the narrow domain end, thus suggesting a tronco-conical channel shape. Moreover, the narrow connector end appears to be rather flexible. When the force applied to the stylus was between 50 and 100 pN, the connector end was fully extended. At forces of approximately 150 pN, these ends were pushed towards the crystal surface. The complementation of the AFM data with the three-dimensional reconstruction obtained from electron microscopy not only confirmed the model proposed, but also offers new insights that may help to explain the role of the connector in DNA packing.  相似文献   

10.
原子力显微镜在生物学研究中的应用进展   总被引:2,自引:0,他引:2  
原子力显微镜(atomic force microscope,AFM)具有原子级分辨率,能够在生理条件下对生物样品进行观察,本综述了AFM的原理及技术要点,举例说明了它在核酸,蛋白质,微生物及细胞等领域的应用进展,相信AFM必将在生物学研究中起到越来越重要的作用。  相似文献   

11.
The study of protein mechanics with the atomic force microscope.   总被引:11,自引:0,他引:11  
The unfolding and folding of single protein molecules can be studied with an atomic force microscope (AFM). Many proteins with mechanical functions contain multiple, individually folded domains with similar structures. Protein engineering techniques have enabled the construction and expression of recombinant proteins that contain multiple copies of identical domains. Thus, the AFM in combination with protein engineering has enabled the kinetic analysis of the force-induced unfolding and refolding of individual domains as well as the study of the determinants of mechanical stability.  相似文献   

12.
The atomic force microscope (AFM) is sensitive to electric double layer interactions in electrolyte solutions, but provides only a qualitative view of interfacial electrostatics. We have fully characterized silicon nitride probe tips and other experimental parameters to allow a quantitative electrostatic analysis by AFM, and we have tested the validity of a simple analytical force expression through numerical simulations. As a test sample, we have measured the effective surface charge density of supported zwitterionic dioleoylphosphatidylcholine membranes with a variable fraction of anionic dioleoylphosphatidylserine. The resulting surface charge density and surface potential values are in quantitative agreement with those predicted by the Gouy-Chapman-Stern model of membrane charge regulation, but only when the numerical analysis is employed. In addition, we demonstrate that the AFM can detect double layer forces at a separation of several screening lengths, and that the probe only perturbs the membrane surface potential by <2%. Finally, we demonstrate 50-nm resolution electrostatic mapping on heterogeneous model membranes with the AFM. This novel combination of capabilities demonstrates that the AFM is a unique and powerful probe of membrane electrostatics.  相似文献   

13.
The spatial distribution of intermolecular forces governs macromolecular interactions. The atomic force microscope, a relatively new tool for investigating interaction forces between nanometer-scale objects, can be used to produce spatially resolved maps of the surface or material properties of a sample; these include charge density, adhesion and stiffness, as well as the force required to break specific ligand-receptor bonds. Maps such as these will provide fundamental insights into biological structure and will become an important tool for characterizing technologically important biological systems.  相似文献   

14.
Mapping interaction forces with the atomic force microscope.   总被引:6,自引:1,他引:6       下载免费PDF全文
Force curves were recorded as the sample was raster-scanned under the tip. This opens new opportunities for imaging with the atomic force microscope: several characteristics of the samples can be measured simultaneously, for example, topography, adhesion forces, elasticity, van der Waals, and electrostatic interactions. The new opportunities are illustrated by images of several characteristics of thin metal films, aggregates of lysozyme, and single molecules of DNA.  相似文献   

15.
One of the unique features of the atomic force microscope (AFM) is its capacity to measure interactions between tip and sample with high sensitivity and unparalleled spatial resolution. Since the development of methods for the functionalization of the tips, the versatility of the AFM has been expanded to experiments where specific molecular interactions are measured. For illustration, we present measurements of the interaction between complementary strands of DNA. A necessary prerequisite for the quantitative analysis of the interaction force is knowledge of the spring constant of the cantilevers. Here, we compare different techniques that allow for the in situ measurement of the absolute value of the spring constant of cantilevers.  相似文献   

16.
17.
18.
In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.  相似文献   

19.
Observation of living cells using the atomic force microscope.   总被引:3,自引:1,他引:3  
S Kasas  V Gotzos    M R Celio 《Biophysical journal》1993,64(2):539-544
We used an atomic force microscope (AFM) to image samples immersed in a fluid in order to study the dynamic behavior of the membranes of living cells. AFM images of cultured cells immersed in a buffer were obtained without any preliminary preparation. We observed surface changes and displacements which suggest that the cells were still alive during the measurements. Some membrane details imaged with the AFM have also been observed using a scanning electron microscope and their dynamic behavior has been confirmed by microcinematography. We believe that the AFM will offer new insights into the exploration of dynamic changes affecting cell membranes.  相似文献   

20.
We formulate the proper statistical mechanics to describe the stretching of a macromolecule under a force provided by the cantilever of an Atomic Force Microscope. In the limit of a soft cantilever, the generalized ensemble of the coupled molecule-cantilever system reduces to the Gibbs ensemble for an isolated molecule subject to a constant force in which the extension is fluctuating. For a stiff cantilever, one obtains the Helmholtz ensemble for an isolated molecule held at a fixed extension with the force fluctuating. Numerical examples and predictions for experiments with cantilevers of differing stiffness are given for short and long chains of poly (ethylene glycol), based on parameter-free ab initio calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号