首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mammalian cellular prion protein (PrP(C)) is a highly conserved glycoprotein that may undergo conversion into a conformationally altered isoform (scrapie prion protein or PrP(Sc)), widely believed to be the pathogenic agent of transmissible spongiform encephalopathies (TSEs). Although much is known about pathogenic PrP conversion and its role in TSEs, the normal function of PrP(C) is poorly understood. Given the abundant expression of PrP(C) in the developing mammalian CNS and the spatial association with differentiated stages of neurogenesis, recently it has been proposed that PrP(C) participates in neural cell differentiation. In the present study, we investigated the role of PrP(C) in neural development during early embryogenesis. In bovine fetuses, PrP(C) was differentially expressed in the neuroepithelium, showing higher levels at the intermediate and marginal layers where more differentiated states of neurogenesis were located. We utilized differentiating mouse embryonic stem (ES) cells to test whether PrP(C) contributed to the process of neural differentiation during early embryogenesis. PrP(C) showed increasing levels of expression starting on Day 9 until Day 18 of ES cell differentiation. PrP(C) expression was negatively correlated with pluripotency marker Oct-4 confirming that ES cells had indeed differentiated. Induction of ES cells differentiation by retinoic acid (RA) resulted in up-regulation of PrP(C) at Day 20 and nestin at Day 12. PrP(C) expression was knocked down in PrP-targeted siRNA ES cells between Days 12 and 20. PrP(C) knockdown in ES cells resulted in nestin reduction at Days 16 and 20. Analysis of bovine fetuses suggests the participation of PrP(C) in neural cell differentiation during early embryogenesis. The positive association between PrP(C) and nestin expression provide evidence for the contribution of PrP(C) to ES cell differentiation into neural progenitor cells.  相似文献   

2.
3.
The stability of globin mRNA in terminally differentiating MEL cells has been reevaluated. Previously, it had been reported that globin mRNA has a half-life of approximately 17 hr in terminally differentiating MEL cells. We show that the previous measurements of this parameter were confounded by physical instability of differentiating MEL cells. By using culture conditions that physically stabilize end-stage cells we show that the stability of globin mRNA in terminally differentiating MEL cells is equal to the value observed for ribosomal RNA, a half-life greater than 60 hr.  相似文献   

4.
During dimethyl sulfoxide (DMSO)-stimulated differentiation of murine erythroleukemia (MEL) cells, one of the early events is the induction of the heme biosynthetic pathway. While recent reports have clearly demonstrated that GATA-1 is involved in the induction of erythroid cell-specific forms of 5-aminolevulinate synthase (ALAS-2) and porphobilinogen (PBG) deaminase and that cellular iron status plays a regulatory role for ALAS-2, little is known about regulation of the remainder of the pathway. In the current study, we have made use of a stable MEL cell mutant (MEAN-1) in which ALAS-2 enzyme activity is not induced by DMSO, hexamethylene bisacetamide (HMBA), or butyric acid. In this cell line, addition of 2% DMSO to growing cultures results in the normal induction of PBG deaminase and coproporphyrinogen oxidase but not in the induction of the terminal two enzymes, protoporphyrinogen oxidase and ferrochelatase. These DMSO-treated cells did not produce mRNA for beta-globin and do not terminally differentiate. In addition, the cellular level of ALAS activity declines rapidly after addition of DMSO, indicating that ALAS-1 must turn over rapidly at this time. Addition of 75 microM hemin alone to the cultures did not induce cells to terminally differentiate or induce any of the pathway enzymes. However, the simultaneous addition of 2% DMSO and 75 microM hemin caused the cells to carry out a normal program of terminal erythroid differentiation, including the induction of ferrochelatase and beta-globin. These data suggest that induction of the entire heme biosynthetic pathway is biphasic in nature and that induction of the terminal enzymes may be mediated by the end product of the pathway, heme. We have introduced mouse ALAS-2 cDNA into the ALAS-2 mutant cell line (MEAN-1) under the control of the mouse metallothionein promoter (MEAN-RA). When Cd and Zn are added to cultures of MEAN-RA in the absence of DMSO, ALAS-2 is induced but erythroid differentiation does not occur and cells continue to grow normally. In the presence of metallothionein inducers and DMSO, the MEAN-RA cells induce in a fashion similar to that found with the wild-type 270 MEL cells. Induction of the activities of ALAS, PBG deaminase, coproporphyrinogen oxidase, and ferrochelatase occurs. In cultures of MEAN-RA where ALAS-2 had been induced with Cd plus Zn 24 h prior to DMSO addition, onset of heme synthesis occurs more rapidly than when DMSO and Cd plus Zn are added simultaneously. This study reveals that induction of ALAS-2 alone is not sufficient to induce terminal differentiation of the MEAN-RA cells, and it does not appear that ALAS-2 alone is the rate-limiting enzyme of the heme biosynthetic pathway during MEL cell differentiation.  相似文献   

5.
The effect of various agents which are known to increase the differentiation of Friend erythroleukemia cells was investigated in cultures of mouse bone marrow cells. N,N-dimethylacetamide (5 and 15 mM) and acetamide (60 mM) significantly increased the number of erythroid colonies observed. Tetramethylurea, dimethylformamide, pyridine N-oxide, and butyric acid were ineffective. Dimethylsulfoxide at a concentration of 1% significantly increased colony number in cultures of marrow cells obtained from male mice, but had no effect in cultures of female bone marrow cells.  相似文献   

6.
7.
tsAEV-LSCC HD3 chicken erythroid cells transformed by the avian erythroblastosis virus (AEV) secrete an autocrine differentiation-inhibiting factor, ADIF, which blocks differentiation without affecting proliferation of the chicken erythroid cells that synthesize and secrete it into the culture medium. The chicken erythroleukemia cell ADIF activity is not restricted to avians. It prevents dimethylsulfoxide (DMSO) from stimulating murine Friend erythroleukemia cells to synthesize hemoglobin. ADIF also blocks erythroid differentiation in normal human and murine bone marrow where it selectively targets the early BFU-E (burst-forming) erythroid precursor cells without affecting the more advanced CFU-E erythroid precursor cells or cells of the different granulocyte-macrophage lineage.  相似文献   

8.
G W Grove  A Zweidler 《Biochemistry》1984,23(19):4436-4443
During hexamethylenebis(acetamide)-induced terminal differentiation of murine erythroleukemia (MEL) cells in vitro, the histone variant proportions undergo changes similar to those observed in vivo in terminally differentiating cells of the young mouse. Thus, there is a rapid increase in the relative amounts of the variants H2A.1 and H2B.2 in parallel with the increase in the number of hemoglobin-producing cells and the sharp decrease in the growth rate. We show that the changes in variant proportions are not associated with slower growth per se but are most likely due to differential changes in the rates of variant synthesis as a result of commitment to terminal differentiation. In addition, we observed an inducer-specific increase in the rate of synthesis and the relative amount of the minor H2A variant 4, well before hemoglobin accumulation. We also present evidence that H2A and H2B histones are synthesized and incorporated into chromatin at a significant rate even when DNA synthesis is inhibited, suggesting turnover of these histones. H2A and H2B turnover can be detected directly even in exponentially growing cells. H2A.1 and H2B.2 have higher turnover rates than H2A.2 and H2B.1, respectively, in exponentially growing cells, a difference which is even more pronounced in induced cells. The magnitude of the differential turnover is not sufficient to account for the changes in the histone variant proportions in the short life of induced MEL cells but could explain the slow accumulation of H2A.2, H2B.1, and H3.3 in nondividing adult tissues of the mouse.  相似文献   

9.
Erythroid differentiation factor (EDF), which is structurally related to transforming growth factor-beta family and induces differentiation of murine erythroleukemia cell clone F5-5, has been labeled with 125I to characterize its interaction with cellular receptors. Binding of 125I-EDF to F5-5 cells is time- and temperature-dependent, specific, saturable, and reversible. Transforming growth factor-beta 1 has no significant effects on growth of F5-5 cells and binding of 125I-EDF to F5-5 cells. Scatchard analysis of the binding data indicated that F5-5 cells have a single class of binding sites (3,200/cell) with an apparent Kd of 3.1 X 10(-10) M. Affinity cross-linking experiments demonstrated three radiolabeled components of 140,000, 76,000, and 67,000 daltons under both reducing and nonreducing conditions. Labeling of these three components has been inhibited by incubation of the cells with excess unlabeled EDF. These results imply molecular weights of 115,000, 51,000, and 42,000 for the EDF receptors on this cell line.  相似文献   

10.
Chromatin subunits from murine erythroleukemia cells were prepared by a method which releases actively transcribing genes. Two casein kinase activities (CK1 and CK2) were isolated from these nucleosomes by gel nitration in 0.5 m NaCl. CK1 (Mr ~ 200,000) and CK2 (Mr ~ 35,000) were further purified by phosphocellulose chromatography and characterized with regard to several parameters which may regulate their activity in vivo. CK1 has an NaCl optimum of 0.14 m, utilizes GTP as phosphate donor ~25% as efficiently as ATP, and phosphorylates a discrete group of high molecular weight nonhistone proteins in the unfractionated chromatin starting material. CK2 has an NaCl optimum of 0.24 m, cannot utilize GTP, and modifies a different group of nonhistones. Both kinases are inhibited by concentrations of hemin (<50 μm) which efficiently induce globin gene expression in erythroleukemia cells. A histone kinase resolved during the gel filtration step is unaffected by hemin. An investigation of the mode of hemin inhibition reveals that CK1 and CK2 interact in different fashions with the inhibitor.  相似文献   

11.
Our previous cell fusion experiments have suggested that the in vitro erythroid differentiation of mouse erythroleukemia cells is the result of a synergistic reaction involving two intracellular differentiation-inducing factors (DIF); these were subsequently demonstrated in the cytoplasmic fraction of mouse erythroleukemia cells. Here, we present experimental evidence indicating that, under conditions in which the two factors (DIF-I and DIF-II) are coinduced, a new factor, which can trigger erythroid differentiation upon introduction into undifferentiated mouse erythroleukemia cells, is produced in the cells. A similar factor was also generated in vitro after the incubation of partially purified DIF-I and DIF-II. We found that protein phosphatases could substitute for DIF-II. These and other experiments suggest that protein dephosphorylation at a tyrosine residue(s) is involved in the generation of the new factor.  相似文献   

12.
Murine erythroleukemia (MEL) cells are widely used to study erythroid differentiation thanks to their ability to terminally differentiate in vitro in response to chemical induction. At the molecular level, not much is known of their terminal differentiation apart from activation of adult-type globin gene expression. We examined changes in gene expression during the terminal differentiation of these cells using microarray-based technology. We identified 180 genes whose expression changed significantly during differentiation. The microarray data were analyzed by hierarchical and k-means clustering and confirmed by semi-quantitative RT-PCR. We identified several genes including H1f0, Bnip3, Mgl2, ST7L, and Cbll1 that could be useful markers for erythropoiesis. These genetic markers should be a valuable resource both as potential regulators in functional studies of erythroid differentiation, and as straightforward cell type markers.  相似文献   

13.
In order to identify and characterize intracellular factors involved in in vitro differentiation of mouse erythroleukemia (MEL) cells, the differentiation process was analyzed by cell and cytoplast fusion. The results suggested that the process is not a single cascade of molecular chain reactions, but a synergistic result of two different inducible intracellular reactions. One reaction is induced following damage to DNA (inhibition of DNA replication) and is not specific to MEL cells. The other reaction, which is specific to MEL cells, is fully induced by typical erythroid inducing agents such as dimethylsulfoxide or hexamethylenebisacetamide even at concentrations suboptimal for the erythroid induction. Based upon these data, we searched for the putative trans-acting differentiation-inducing factors and detected two proteinaceous factors (DIF-I and DIF-II) in the cytosol fraction which apparently correspond to these reactions. When, partially purified, either one of these factors was introduced into undifferentiated MEL cells, it triggered erythroid differentiation, provided that the recipient cells had been potentiated by the induction of the other reaction. In this article, we summarize the basic characteristics of these cytoplasmic factors involved in erythroid differentiation in MEL cells.  相似文献   

14.
When mouse erythroleukemia (MEL) cells were incubated in the presence of chloramphenicol (a specific inhibitor for mitochondrial protein synthesis) during the early stage of in vitro erythroid differentiation, the number of induced erythroid cells was greatly reduced. By use of cell fusion between two genetically marked MEL cells, this finding was further investigated. We found that the drug, along with other agents which inhibit mitochondrial protein synthesis, blocked the induction and turnover of the DMSO-inducible intracellular-erythroid-inducing activity (differentiation-inducing factor II) in a manner similar to that of cycloheximide, an inhibitor for nuclear protein synthesis. The inhibitory effect was confirmed by directly assaying differentiation-inducing factor II in the cell extracts. These results strongly suggest that mitochondrial protein synthesis is closely associated with in vitro erythroid differentiation of MEL cells.  相似文献   

15.
16.
17.
Erythropoietin (epo) appears to play a significant role in influencing the proliferation and differentiation of erythroid progenitor (CFU-E) cells. To determine the mechanism of action of epo, the effect of drugs on the in vitro colony formation of CFU-E cells induced from a novel murine erythroleukemia cell line, TSA8, was examined. While cytosine arabinoside inhibited colony formation and terminal differentiation of the CFU-E cells responding to epo, herbimycin, which is a drug that inhibits src-related phosphorylation, inhibited colony formation only. The same effect of herbimycin was observed with normal CFU-E cells from mouse fetal liver cells. These results suggest that epo induces two signals, one for proliferation and the other for differentiation, and that the two signals are not linked in erythroid progenitor cells.  相似文献   

18.
19.
The relationship between differentiation of murine erythroleukemia cells (MEL) induced by DMSO and the cell division cycle has been analyzed. We demonstrate that incubation in the presence of DMSO increases the length of the G1 phase of the cell cycle. A method of synchronization of MEL cells by unit gravity sedimentation has been developed and characterized. Using this method, a series of synchronized cell populations covering the entire cell division cycle can be generated simultaneously. Cells synchronized by this technique were challenged with DMSO and analyzed for kinetics of commitment to the differentiation program. Our results indicate that populations of cells in G1 or G2 at the time of addition of inducer give rise to a greater proportion of committed cells than an unfractionated population, while cells in S phase result in a lower percentage of committed cells than the unfractionated population when cultured in DMSO.  相似文献   

20.
The synthesis, accumulation, and cellular distribution of cathepsins E and D during the dimethyl sulfoxide (DMSO)-induced differentiation of Friend erythroleukemia cells were investigated. The cellular levels of cathepsins E and D rapidly increased within 1 day of DMSO induction and then sharply decreased over the next 7 days. Since the cells during 1 day of differentiation were morphologically the same as uninduced cells, the results suggest the importance of these enzymes in more cellular proteolysis for the following committed differentiation. While cathepsin D was present mostly in the sedimentable fraction of cells throughout the differentiation period, the distribution of cathepsin E varied to the stage of differentiation. The ratio of the soluble/sedimentable cathepsin E content was 1.1, 1.4, 0.9, and 0.7 in cells after 0, 1, 4, and 7 days of DMSO treatment, respectively. The maturation of reticulocytes to erythrocytes was accompanied by complete loss of the soluble cathepsin E and of all of the cellular cathepsin D. Immunoblotting analyses revealed that both uninduced and induced cells contained two forms of cathepsin E; a high molecular weight form (82 kDa) which was mainly associated with the sedimentable fraction and a low molecular weight form (74 kDa) which was found largely in the soluble fraction. The distribution of these two forms was not significantly changed throughout the differentiation period, but the 74-kDa protein was completely eliminated with maturation of reticulocytes to erythrocytes. Cathepsin D also appeared in two forms in both uninduced and induced cells; a minor (46 kDa) and a major (42 kDa) form which appear to have a precursor-product relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号