首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in cortisol concentration in response to exercise at 3 different intensities were quantified. Ten apparently healthy, recreationally active males participated. On 4 separate occasions, subjects were assigned a random order of 1-hour cycle ergometer bouts of exercise at 44.5 +/- 5.5%, 62.3 +/- 3.8%, and 76.0 +/- 6.0% (mean +/- SD) of VO2peak and a resting control session. Saliva samples were collected before exercise at 10, 20, 40, and 59 minutes of exercise and at 20 minutes of recovery. Differences in cortisol concentration were assessed via multivariate analysis of variance (alpha = 0.05) Tukey post hoc analysis when indicated. During the highest-intensity exercise session, cortisol was significantly higher at 59 minutes of exercise (p = 0.004) and at 20 minutes of recovery (p = 0.016) than at those same time points during the resting control session. No significant differences in cortisol concentration were noted among resting, low-, and moderate-intensity exercise. Exercise <40 minutes in duration elicited no significant differences at any intensity. These data indicate that only exercise of high intensity and long duration results in significant elevations of salivary cortisol.  相似文献   

2.
A comparison of the immediate effects of resistance, aerobic, and concurrent exercise on postexercise hypotension. The influence of resistance exercise (RE), aerobic exercise (AE), and concurrent exercise (CE) on postexercise hypotension (PEH) is not known. We investigated the immediate blood pressure (BP) lowering effects of exercise after RE, AE, and CE sessions among healthy subjects. Twenty-one men (20.7 ± 0.7 years) performed 4 experimental sessions each in a within-subject design: control (CTL-seated rest for 60 minutes), RE (3 sets at 80% 1RM for 8 exercises, including upper and lower limbs), AE (7-minutes warm-up followed by 50 minutes of cycle ergometer exercise at 65% VO?peak and 3-minute cooldown), and CE (2 sets at 80% 1RM for 6 exercises among those which composed the RE session, plus 20 minutes of cycle ergometer exercise at 65% VO?peak, 7-minute warm-up and 3-minute cooldown, exactly in this order). The total duration of each exercise session was approximately 60 minutes. Systolic blood pressure (SBP) and diastolic blood pressure (DBP) were assessed by ambulatory monitoring at rest (20 minutes) and every 10 minutes after the exercise during 120 minutes while in the laboratory. The duration of the decrease in SBP was longer after AE and CE (120 minutes) compared to RE (80 minutes); and for DBP after AE (50 minutes) compared to CE (40 minutes) and RE (20 minutes) (p < 0.05). The magnitude of the decrease in SBP and DBP was similar after all exercise sessions and significantly different from CTL (p < 0.05) (SBP: RE = 4.1 ± 2.0 mm Hg, AE = 6.3 ± 1.3 mm Hg, CE = 5.1 ± 2.2 mm Hg; DBP: RE = 1.8 ± 1.1 mm Hg, AE = 1.8 ± 1.0 mm Hg, CE = 1.6 ± 0.6 mm Hg). It was concluded that exercise sessions combining aerobic and resistance activities are as effective as AE sessions and more effective than RE sessions to promote PEH.  相似文献   

3.
Active and passive intervals (AI, PI) between exercise series promote different hemodynamic responses; however, the impact of these intervals on the blood pressure response has not yet been investigated. The objective of this study was to compare the impact of AIs and PIs during resistance exercises with the magnitude of postexercise hypotension (PEH). Elderly hypertensive women (n = 21, 61.2 ± 2 years of age) completed 4 sessions for upper or lower limbs with AI or PI (3 sets, 15 repetitions, 60% load of 15 repetition maximum (RM), and an interval of 90 seconds between sets). Blood pressure was measured 10 minutes before and at 10, 20, 30, 40, and 50 minutes after the exercise sessions. The heart rate at the end of each AI was always significantly higher than that after the PI, but the perceived exertion as measured by the Perceived Exertion Scale (OMNI-RPE) was similar to that of PI exercise protocols. In the lower limb exercises, AI resulted in significantly and consistently higher PEH than in exercises with PI for both systolic (from 20 minutes postexercise) and diastolic (from 10 minutes postexercise) pressures. The upper limb exercises promoted much more discrete PEH in relation to the lower limb exercises, given that the AI promoted significantly higher PEH relative to the PI protocols, but only for systolic PEH and only from 30 minutes postexercise. This is the first time that AIs between sets in a session of resistance exercises have been shown to be a highly effective methodological strategy to increase PEH in elderly hypertensive women.  相似文献   

4.
The purpose of this study was to determine the acute anabolic and catabolic hormone response to endurance and resistance exercise bouts of equal volume in subjects with differing training status. Twenty-two healthy men were recruited who were either resistance trained (n = 7), endurance trained (n = 8), or sedentary (n = 7). Three sessions were completed: a resting session, a 40-min run at 50-55% maximal oxygen consumption, and a resistance exercise session. Expired gases were monitored continuously during exercise, and the endurance and resistance exercise sessions were individually matched for caloric expenditure. Blood samples were drawn before exercise and 1, 2, 3, and 4 h after the start of the exercise. Plasma was analyzed for luteinizing hormone, dehydroepiandrosterone sulfate, cortisol, and free and total testosterone. Androgens increased in response to exercise, particularly resistance exercise, whereas cortisol only increased after resistance exercise. Dehydroepiandrosterone sulfate levels increased during the resistance exercise session and remained elevated during recovery in the resistance-trained subjects. Endurance-trained subjects displayed less pronounced changes in hormone concentrations in response to exercise than resistance-trained subjects. After an initial postexercise increase, there was a significant decline in free and total testosterone during recovery from resistance exercise (P < 0.05), particularly in resistance-trained subjects. On the basis of the results of this study, it appears that the endogenous hormone profile of men is more dependent on exercise mode or intensity than exercise volume as measured by caloric expenditure. The relatively catabolic environment observed during the resistance session may indicate an intensity-rather than a mode-dependent response.  相似文献   

5.
The present study was conducted to examine (a) whether there is an association between maximal oxygen uptake (Vo(2)max) and reduction in postexercise heart rate (HR) and blood lactate concentrations ([La]) following resistance exercise and (b) how intensity and Volume of resistance exercise affect postexercise Vo(2). Eleven regularly weight-trained males (20.8 +/- 1.3 years; 96.2 +/- 14.4 kg, 182.4 +/- 7.3 cm) underwent 4 sets of squat exercise on 3 separate occasions that differed in both exercise intensity and volume. During each testing session, subjects performed either 15 repetitions.set(-1) at 60% of 1 repetition maximum (1RM) (L), 10 repetitions.set(-1) at 75% of 1RM (M), or 4 repetitions.set(-1) at 90% of 1RM (H). During each exercise, Vo(2) and HR were measured before (PRE), immediately post (IP), and at 10 (10P), 20 (20P) 30 (30P), and 40 (40P) minutes postexercise. The [La] was measured at PRE, IP, 20P, and 40P. Decrease in HR (DeltaHR) was determined by subtracting HR at 10P from that at IP, whereas decrease in [La] (Delta[La]) was computed by subtracting [La] at 20P from that at IP. A significant correlation (p < 0.05) was found between Vo(2)max and DeltaHR in all exercise conditions. A significant correlation (p < 0.05) was also found between Vo(2)max and Delta[La] in L and M but not in H. The Vo(2) was higher (p < 0.05) during M than H at IP and 10P, while no difference was seen between L and M and between L and H. These results indicate that those with greater aerobic capacity tend to have a greater reduction in HR and [La] during recovery from resistance exercise. In addition, an exercise routine performed at low to moderate intensity coupled with a moderate to high exercise volume is most effective in maximizing caloric expenditure following resistance exercise.  相似文献   

6.
7.
The effect of resistance exercise (RE) on the postexercise systolic and diastolic blood pressure (SBP and DBP) response in young men was investigated. Group 1 (G1) and group 2 (G2) performed three 6 repetition maximum (6RM) sets in a set repetition format for 5 and 6 exercises, respectively. G1 and G2 also performed a circuit and set repetition format session, respectively, using 50% of the 6RM for 3 sets of 12 repetitions (12-repetition protocol). SBP and DBP were determined before and up to 60 minutes postexercise. G1's postexercise SBP demonstrated a significant decrease from its preexercise SBP, lasting 50 minutes after both RE sessions. G2's postexercise SBP demonstrated a significant difference from its preexercise SBP after the 6RM and 12-repetition protocol, lasting 60 and 40 minutes, respectively. The only significant difference in the DBP from rest was at 10 minutes postexercise for G2 after the 12-repetition-per-set protocol. In summary, results indicate that RE intensity affects the duration, but not the magnitude, of the postexercise hypotensive response.  相似文献   

8.
The purpose of this study was to determine whether resistance exercise performance and postexercise muscle damage were altered when consuming a carbohydrate and protein beverage (CHO-PRO; 6.2% and 1.5% concentrations). Thirty-four male subjects (age: 21.5 +/- 1.7 years; height: 177.3 +/- 1.1 cm; weight: 77.2 +/- 2.2 kg) completed 3 sets of 8 repetitions at their 8 repetition maximum to volitional fatigue. The exercise order consisted of the high pull, leg curl, standing overhead press, leg extension, lat pull-down, leg press, and bench press. In a double-blind, posttest-only control group design, subjects consumed 355 ml of either CHO-PRO or placebo (electrolyte and artificial sweetener beverage) 30 minutes prior to exercise, 177 ml immediately prior to exercise, 177 ml halfway through the exercise bout, and 355 ml immediately following the exercise bout. There were no significant differences between groups relative to exercise performance. Cortisol was significantly elevated in the placebo group compared to the CHO-PRO group at 24 hours postexercise. Insulin was significantly elevated immediately pre-exercise, after the fourth lift, immediately postexercise, 1 hour, and 6 hours postexercise in CHO-PRO compared to the placebo group. Myoglobin levels in the placebo group approached significance halfway through the exercise bout and at 1 hour postexercise (p = 0.06 and 0.07, respectively) and were significantly elevated at 6 hours postexercise compared to the CHO-PRO group. Creatine kinase levels were significantly elevated in the placebo group at 24 hours postexercise compared to the CHO-PRO group. The CHO-PRO supplement did not improve performance during a resistance exercise bout, but appeared to reduce muscle damage, as evidenced by the responses of both myoglobin and creatine kinase. These results suggest the use of a CHO-PRO supplement during resistance training to reduce muscle damage and soreness.  相似文献   

9.
ABSTRACT: Kamandulis, S, Snieckus, A, Venckunas, T, Aagaard, P, Masiulis, N, and Skurvydas, A. Rapid increase in training load affects markers of skeletal muscle damage and mechanical performance. J Strength Cond Res 26(11): 2953-2961, 2012-The aim of this study was to monitor the changes in indirect markers of muscle damage during 3 weeks (9 training sessions) of stretch-shortening (drop jump) exercise with constant load alternated with steep increases in load. Physically active men (n = 9, mean age 19.1 years) performed a program involving a rapid stepwise increase in the number of jumps, drop height, and squat depth, and the addition of weight. Concentric, isometric maximal voluntary contraction (MVC), and stimulated knee extension torque were measured before and 10 minutes after each session. Muscle soreness and plasma creatine kinase activity were assessed after each session. Steep increments in stretch-shortening exercise load in sessions 4 and 7 amplified the postexercise decrease in stimulated muscle torque and slightly increased muscle soreness but had a minimal effect on the recovery of MVC and stimulated torque. Maximal jump height increased by 7.8 ± 6.3% (p < 0.05), 11.4 ± 3.3% (p < 0.05), and 12.8 ± 3.6% (p < 0.05) at 3, 10, and 17 days after the final training session, respectively. Gains in isometric knee extension MVC (7.9 ± 8.2%) and 100-Hz-evoked torque (9.9 ± 9.6%) (both p < 0.05) were observed within 17 days after the end of the training. The magnitude of improvement was greater after this protocol than that induced by a continuous constant progression loading pattern with small gradual load increments in each training session. These findings suggest that plyometric training using infrequent but steep increases in loading intensity and volume may be beneficial to athletic performance.  相似文献   

10.
Exercise increases serum Hsp72 in humans   总被引:12,自引:3,他引:9       下载免费PDF全文
Recent evidence suggests that heat shock proteins (Hsps) may have an important systemic role as a signal to activate the immune system. Since acute exercise is known to induce Hsp72 (the inducible form of the 70-kDa family of Hsp) in a variety of tissues including contracting skeletal muscle, we hypothesized that such exercise would result in the release of Hsp72 from stressed cells into the blood. Six humans (5 males, 1 female) ran on a treadmill for 60 minutes at a workload corresponding to 70% of their peak oxygen consumption. Blood was sampled from a forearm vein at rest (R), 30 minutes during exercise, immediately postexercise (60 minutes), and 2, 8, and 24 hours after exercise. These samples were analyzed for serum Hsp72 protein. In addition, plasma creatine kinase (CK) was measured at these time points as a crude marker of muscle damage. With the exception of the sample collected at 30 minutes, muscle biopsies (n = 5 males) were also obtained from the vastus lateralis at the time of blood sampling and analyzed for Hsp72 gene and protein expression. Serum Hsp72 protein increased from rest, both during and after exercise (0.13 0.10 vs 0.87+/-0.24 and 1.02+/-0.41 ng/mL at rest, 30 and 60 minutes, respectively, P < 0.05, mean SE). In addition, plasma CK was elevated (P < 0.05) 8 hours postexercise. Skeletal muscle Hsp72 mRNA expression increased 6.5-fold (P < 0.05) from rest 2 hours postexercise, and although there was a tendency for Hsp72 protein expression to be elevated 2 and 8 hours following exercise compared with rest, results were not statistically significant. The increase in serum Hsp72 preceded any increase in Hsp72 gene or protein expression in contracting muscle, suggesting that Hsp72 was released from other tissues or organs. This study is the first to demonstrate that acute exercise can increase Hsp72 in the peripheral circulation, suggesting that during stress these proteins may indeed have a systemic role.  相似文献   

11.
The purpose of this study was to investigate the effects of carbohydrate ingestion on force output and time to exhaustion using single leg static contractions superimposed with brief periods of electromyostimulation. Six trained male subjects participated in a randomized, counterbalanced, double-blind study. The subjects were randomly assigned to placebo (PL) or carbohydrate (CHO). The subjects in CHO consumed 1 g of carbohydrate per kilogram of body mass loading dose and 0.17 g of carbohydrate per kilogram of body mass every 6 minutes during the exercise protocol. The PL received an equal volume of a solution made of saccharin and aspartame. The exercise protocol consisted of repeated 20-second static contractions of quadriceps muscle at 50% maximal voluntary contraction followed by 40-second rest until failure occurred. Importantly, the force output during quadriceps maximal voluntary contraction strength with superimposed electromyostimulation was measured in the beginning and every 5 minutes during the last 3 seconds of static contractions throughout the exercise protocol. Venous blood samples were taken preexercise, immediately postexercise, and at 5 minutes postexercise and analyzed for blood lactate. Our results indicate that time to exhaustion (PL = 16.0 ± 8.1 minutes; CHO = 29.0 ± 13.1 minutes) and force output (PL = 3,638.7 ± 524.5 N; CHO = 5,540.1 ± 726.1 N) were significantly higher (p < 0.05) in CHO compared with that in PL. Data suggest that carbohydrate ingestion before and during static muscle contractions can increase force output and increase time to exhaustion. Therefore, our data suggest that carbohydrate supplementation before and during resistance exercise might help increase the training volume of athletes.  相似文献   

12.
This study investigated the reliability of the session rating of perceived exertion (RPE) scale to quantify exercise intensity during high-intensity (H), moderate-intensity (M), and low-intensity (L) resistance training. Nine men (24.7 +/- 3.8 years) and 10 women (22.1 +/- 2.6 years) performed each intensity twice. Each protocol consisted of 5 exercises: back squat, bench press, overhead press, biceps curl, and triceps pushdown. The H consisted of 1 set of 4-5 repetitions at 90% of the subject's 1 repetition maximum (1RM). The M consisted of 1 set of 10 repetitions at 70% 1RM, and the L consisted of 1 set of 15 repetitions at 50% 1RM. RPE was measured following the completion of each set and 30 minutes postexercise (session RPE). Session RPE was higher for the H than M and L exercise bouts (p < or = 0.05). Performing fewer repetitions at a higher intensity was perceived to be more difficult than performing more repetitions at a lower intensity. The intraclass correlation coefficient for the session RPE was 0.88. The session RPE is a reliable method to quantify various intensities of resistance training.  相似文献   

13.
The purpose of this study was to determine the effects of varying intensities of exercise in normoxic and hypoxic environments on selected immune regulation and metabolic responses. Using a within-subjects design, subjects performed maximal tests on a cycle ergometer in both normoxic (PiO2 = 20.94%) and hypoxic (PiO2 = 14.65%) environments to determine [latin capital V with dot above]O2max. On separate occasions, subjects then performed four randomly assigned, 1-hour exercise bouts on a cycle ergometer (two each in normoxic and hypoxic environments). The hypoxic environment was created by reducing the O2 concentration of inspired air using a commercially available hypoxic chamber. The intensities for the exercise bouts were predetermined as 40 and 60% of their normoxic [latin capital V with dot above]O2max for the normoxic exercise bouts and as 40 and 60% of their hypoxic [latin capital V with dot above]O2max for the hypoxic exercise bouts. Blood samples were collected preexercise, postexercise, 15 minutes postexercise, 2 hours postexercise, and 24 hours postexercise for the determination of interleukin-1 (IL-1), tumor necrosis factor-[alpha] (TNF-[alpha]), glucose, glycerol, free fatty acids, epinephrine, norepinephrine, and cortisol. There were no significant differences (p < 0.05) between condition or intensity for IL-1 or TNF-[alpha]. Significant differences (p < 0.05) between intensities were demonstrated for epinephrine, norepinephrine, and cortisol (p < 0.05). A significant difference was identified between normoxic and hypoxic environments with respect to nonesterifed fatty acids (0.45 +/- 0.37 vs. 0.58 +/- 0.31 mEq x L-1, respectively; p = 0.012). During prolonged exercise at 40 and 60% of their respective [latin capital V with dot above]O2max values, hypoxia did not seem to dramatically alter the response of the selected immune system or metabolic markers. Exercise training that uses acute hypoxic environments does not adversely affect immune regulation system status and may be beneficial for those individuals looking to increase endurance performance.  相似文献   

14.
The purpose of this study was to determine the effects of high intensity/ low volume (HILV) and low intensity/high volume (LIHV) isokinetic resistance exercise on postexercise glucose tolerance. Subjects (n = 10) participated in a counterbalanced, randomized design of 2 separate isokinetic resistance exercise trials (HILV and LIHV) of reciprocal concentric knee flexion and knee extension in a fasted state. Each bout was followed by a 45-minute oral glucose tolerance test (OGTT; 1.8 g.kg fat free mass(-1)). Blood samples were obtained every 15 minutes to determine glucose and insulin concentrations. There was no difference in total work between the 2 trials (p = 0.229). Blood glucose was significantly higher at all time points compared with time 0 following the LIHV trial (p < 0.05). Following the HILV trial, blood glucose was significantly elevated at 15 and 30 minutes (p < 0.05), but returned to resting values by 45 minutes. Insulin concentration was significantly elevated following both trials at all time points (p < 0.05). Blood glucose and insulin were significantly higher following the LIHV at 30 and 45 minutes compared with the HILV trial (p < 0.05). These results demonstrate that although the total work output was similar across trials, high intensity muscle contraction is associated with an enhanced normalization of glucose homeostasis following a large postexercise oral glucose feed.  相似文献   

15.
Excess postexercise oxygen consumption (EPOC) may describe the impact of previous exercise on energy metabolism. Ten males completed Resistance Only, Run Only, Resistance-Run, and Run-Resistance experimental conditions. Resistance exercise consisted of 7 lifts. Running consisted of 25 minutes of treadmill exercise. Vo(2) was determined during treadmill exercise and after each exercise treatment. Our findings indicated that treadmill exercise Vo(2) was significantly higher for Resistance-Run compared with Run-Resistance and Resistance Only at all time intervals. At 10 minutes postexercise, Vo(2) was greater for Resistance Only and Run-Resistance than for Resistance-Run. At 20 and 30 minutes, Vo(2) following Resistance Only was significantly greater than following Run Only. In conclusion, EPOC is greatest following Run-Resistance; however, treadmill exercise is more physiologically difficult following resistance exercise. Furthermore, the sequence of resistance and treadmill exercise influences EPOC, primarily because of the effects of resistance exercise rather than the exercise combination. We recommend performing aerobic exercise before resistance exercise when combining them into 1 exercise session.  相似文献   

16.
This study compared serum total testosterone (TT) and free testosterone (FT) responses of young (20-26 years, n = 8), middle-aged (38-53 years, n = 7), and older (59-72 years, n = 9) men to resistance exercise. We also examined the relationships between testosterone (T) levels and strength, bone mineral density (BMD), and body composition variables for each age group. Subjects were tested for isotonic muscular strength (1 repetition maximum [1RM]), BMD (dual-energy x-ray absorptiometry [DXA]) and body composition (DXA). Each group performed an acute exercise protocol (3 sets, 10 repetitions, 80% of 1RM, 6 exercises). Blood samples were obtained at baseline, immediately postexercise, and 15 minutes postexercise for the TT and FT assays. The older age group had significantly (p < 0.05) lower T levels than the young group, but each group exhibited an increase (p < 0.05) in TT and FT immediately postexercise. Total T and FT were significantly correlated (p < 0.05) with strength in middle-aged and older men and with bone-free lean tissue mass in older men. In conclusion, middle-aged and older men showed similar relative T responses to those of younger men to a single bout of high-intensity resistance exercise. However, T levels were related to strength and muscle mass only in middle-aged or older men. On a practical application level, older men can complete a high-intensity resistance exercise program resulting in spikes in T that may attenuate age-related muscle and BMD loss.  相似文献   

17.
Clustering of cardiovascular risk factors may lead to endothelial dysfunction. Physical exercise is an important factor in prevention and treatment of endothelial dysfunction. We wanted to determine the time course of adaptation to a single bout of exercise at either high or moderate intensity upon endothelial function both before and after a 16-week fitness program in patients with metabolic syndrome. Twenty-eight patients with metabolic syndrome participated in the study and were randomized and stratified (according to age and sex) into an aerobic interval exercise training group (AIT, n = 11), a continuously moderate-intensity exercise training group (CME, n = 8) or to a control group (n = 9). Flow-mediated dilatation (FMD) was determined at baseline, immediately, 24, 48, and 72 hours after 1 bout of exercise and repeated after 16 weeks of exercise. In the untrained state, FMD improved from 5 to 11% (p = 0.003) immediately after a single bout of aerobic interval training (AIT), an effect lasting 72 hours postexercise. In comparison, continuous moderate exercise (CME) improved FMD immediately after a single bout of exercise from 5 to 8% (p = 0.02), an effect lasting 24 hours postexercise (group difference, p < 0.001). In the trained state, a single bout of AIT resulted in a 2% (p = 0.007) acute increase of FMD lasting 48 hours postexercise. The CME increased FMD by 3% (p < 0.01), an effect lasting 24 hours postexercise (group difference p = 0.0012). Blood glucose level decreased after 1 single bout of AIT in the untrained state (p < 0.05), and the effect lasted at least 72 hours postexercise (p < 0.01). Acute CME decreased blood glucose with normalization of the values 24 hours postexercise (p < 0.01). A single bout of exercise in the trained state reduced fasting blood glucose by 10% (p < 0.05) after both AIT and CME. Exercise training, especially high intensity, thus appears to be highly beneficial in reducing blood glucose and improving endothelial function.  相似文献   

18.
This investigation was conducted to determine the effect of postexercise ethanol intoxication (21.97 +/- 1.09 mmol/l blood) on the response of selected aspects of the neuroendocrine system to a resistance exercise (Ex) session. Nine resistance-trained men (25.0 +/- 1.4 yr, 179.4 +/- 3.4 cm, 79.7 +/- 3.3 kg) were used to compare three 3-day treatments: control, Ex, and ethanol after exercise (ExEt). Blood was collected serially from an antecubital vein before exercise, immediately after exercise, and for pooled analysis at 20-40 (2 samples), 60-120 (4 samples), and 140-300 (9 samples) min after exercise on day 1 and in the morning (2 samples each) on days 2 and 3. Ethanol did not increase circulating epinephrine, norepinephrine, or cortisol concentration (Cort) above Ex elevations. At 60-120 min, only ExEt Cort was greater than control Cort. Concentrations of testosterone, luteinizing hormone, and corticotropin were not affected by either treatment. It is concluded that, although this blood ethanol concentration is insufficient to acutely increase Cort above that caused by Ex alone, it appears that ethanol may have a prolonged effect beyond the Ex response. This blood ethanol concentration does not further stimulate the sympathoadrenal system during the postexercise response.  相似文献   

19.
The purpose of this study was to compare the internal load responses (session rating of perceived exertion [RPE] and salivary cortisol) between simulated and official matches (SM and OM). Ten professional basketball players participated in 2 OMs and 2 SMs during the competition season. Subjects provided saliva samples 30 minutes before the prematch warm-up (PRE) and 10 minutes after the end of the match. Session RPE (CR-10 scale) was assessed 30 minutes after each match. The results from the 2-way analysis of variance showed significant differences for post-OM salivary cortisol as compared with pre-OM values (p < 0.05). No changes were observed for cortisol during the SM. Before the OM, a significant difference in salivary cortisol was observed as compared with pre-SM values (p < 0.05). Moreover, the OM session RPE was significantly greater than that of SM. There was a significant correlation between session RPE and cortisol changes (r = 0.75). In summary, the results of this study showed a greater magnitude of cortisol and session RPE responses after OM as compared with that after SM confirming the hypothesis that a real competition generates a greater stress response than a simulated condition does. The anticipatory effect was also observed in the OM. In addition, the results indicate that session RPE seems to be a viable tool in monitoring internal loads, and the results are useful in providing a better understanding of internal loads imposed by basketball training and competitions. The precise monitoring of these responses might help the coaches to plan appropriate loads maximizing recovery and performance.  相似文献   

20.
The study investigated the heart rate (HR) and heart rate variability (HRV) before, during, and after stretching exercises performed by subjects with low flexibility levels. Ten men (age: 23 ± 2 years; weight: 82 ± 13 kg; height: 177 ± 5 cm; sit-and-reach: 23 ± 4 cm) had the HR and HRV assessed during 30 minutes at rest, during 3 stretching exercises for the trunk and hamstrings (3 sets of 30 seconds at maximum range of motion), and after 30 minutes postexercise. The HRV was analyzed in the time ('SD of normal NN intervals' [SDNN], 'root mean of the squared sum of successive differences' [RMSSD], 'number of pairs of adjacent RR intervals differing by >50 milliseconds divided by the total of all RR intervals' [PNN50]) and frequency domains ('low-frequency component' [LF], 'high-frequency component' [HF], LF/HF ratio). The HR and SDNN increased during exercise (p < 0.03) and decreased in the postexercise period (p = 0.02). The RMSSD decreased during stretching (p = 0.03) and increased along recovery (p = 0.03). At the end of recovery, HR was lower (p = 0.01), SDNN was higher (p = 0.02), and PNN50 was similar (p = 0.42) to pre-exercise values. The LF increased (p = 0.02) and HF decreased (p = 0.01) while stretching, but after recovery, their values were similar to pre-exercise (p = 0.09 and p = 0.3, respectively). The LF/HF ratio increased during exercise (p = 0.02) and declined during recovery (p = 0.02), albeit remaining higher than at rest (p = 0.03). In conclusion, the parasympathetic activity rapidly increased after stretching, whereas the sympathetic activity increased during exercise and had a slower postexercise reduction. Stretching sessions including multiple exercises and sets acutely changed the sympathovagal balance in subjects with low flexibility, especially enhancing the postexercise vagal modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号