首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterization of cortisol binding sites in chicken liver plasma membrane   总被引:2,自引:0,他引:2  
1. The presence of sites specifically binding [3H]cortisol in plasma membrane isolated from chicken liver has been determined. The kinetic parameters of this binding are: Kd = 4.5 nM and Bmax = 2225 fmol/mg protein in presence of 10(-6) M progesterone. 2. The affinities of several natural and synthetic steroids for the membrane binding site respect to the binding of 4 nM [3H]cortisol without competitor increased in the following order: Testosterone less than pregnenone less than dexamethasone less than progesterone less than prednisolone less than corticosterone less than deoxycorticosterone. 3. Other steroids such as estradiol, ouabain and triamcinolone acetonide does not bind to the plasma membrane. 4. Metal ions such as Ca2+ and Mg2+ did not modify the binding of [3H]cortisol. 5. Neither propranolol nor phentolamine, beta- and alpha-adrenergic antagonists affected [3H]cortisol binding to the plasma membranes. 6. The result suggest that the binding site detected is more specific for glucocorticoids and it is different of nuclear glucocorticoid receptor and progesterone receptor.  相似文献   

2.
The specific binding of [3H]corticosterone to mouse liver purified plasma membrane fractions is a saturable, reversible, and temperature-dependent process. Only one type of independent and equivalent binding sites has been determined in plasma membrane (Kd = 4.1 nM and Bmax = 3368 fmol/mg). As can be deduced from displacement data obtained in plasma membrane, the high-affinity binding site is different from nuclear glucocorticoid, nuclear progesterone, and Na+, K(+)-ATPase digitalis receptors. Probably this corticosterone binding site or receptor is the same one determined previously for [3H]cortisol in mouse liver plasma membrane. Such beta- and alpha-adrenergic antagonists as propranolol and phentolamine did not affect [3H]corticosterone binding to plasma membranes; therefore, this binding site is independent of these receptors. The binding sites in plasma membranes are not exclusive for corticosterone, but other steroids are also bound with very different affinities.  相似文献   

3.
M Zucker  A Weizman  M Rehavi 《Life sciences》2001,69(19):2311-2317
The present study indicates that human platelets can be used as an accessible peripheral model not only for the plasma membrane serotonin transporter, but also for the vesicular monoamine transporter. The vesicular monoamine transporter (VMAT2) is responsible for the accumulation of monoamines in the synaptic vesicles. VMAT2 differs from the plasma membrane transporters in its capability to recognize serotonin, histamine, norepinephrine and dopamine with almost the same affinity. Dihydrotetrabenazine (TBZOH) is a very potent inhibitor of VMAT2 that binds with high affinity to this transporter. [3H]TBZOH has been used as a ligand to label VMAT2 in human, bovine and rodent brain. In this study we characterized the pharmacodynamic and pharmacokinetic parameters of [3H]TBZOH binding in human platelets as compared to rat brain. The density (Bmax) and affinity (Kd) of [3H]TBZOH specific binding was assessed by Scatchard analysis. Association and dissociation rate constants (k(on), K(off)) were assessed by kinetic binding studies. In this study high-affinity and saturable binding sites for [3H]TBZOH were demonstrated in human platelets. Both the affinity of [3H]TBZOH to its binding site in platelets (Kd = 3.2+/-0.5 nM) and the kinetic rate constants (K(on) = 2.8 x 10(7) M(-1) min(-1); K(off) = 0.099 min(-1)) were similar to that in rat brain (Kd(striatum) = 1.5 nM; Kd(cerebral cortex) = 1.35 nM; K(on) = 2 x 10(7) M(-1) min(-1); K(off) = 0.069 min(-1)). Only the VMAT2 blockers tetrabenazine and reserpine inhibited [3H]TBZOH specific binding.  相似文献   

4.
The binding of 45Ca2+ into synaptosomal plasma membranes (SPM) of dog brain follows a sigmoid path. In graphical analysis of this binding the mean Hill coefficient (h) was 1.64 +/- 0.09 (r2 = 0.96 +/- 0.02). Binding of Ca2+ into SPM was saturable, with an apparent binding constant of 1.2 +/- 0.1 microM. At saturation, such calcium specific binding sites corresponded to 11.2 +/- 0.9 nmol/mg SPM protein. The Hill plot in combination with the biphasic nature of the curve to obtain the equilibrium constant, showed a moderate degree of positive cooperativity in the binding of calcium into SPM of at least one class of high affinity specific binding sites. [14C]estradiol, [14C]estrone and [14C]progesterone, when incubated with SPM up to a concentration of 10 microM for 2 hr at 37 degrees C, bind into SPM at nmolar concentrations. Ca2+ ions up to 5 mM considerably increase steroids binding into SPM. This effect of calcium was concentration-dependent, reached saturation at approx 4-5 mM. Once calcium has promoted steroids binding, the subsequent addition of 25 mM EGTA failed to displace bound steroids. Molecular interactions between calcium and SPM was assessed by measuring the steady-state fluorescence polarization (P) of 1,6-diphenyl-1,3,5-hexatriene (DPH), and by estimating the production of malondialdehyde (MDA) during 2 hr incubation of Ca2+ (5 mM) with SPM at 37 degrees C. The effect of Ca2+ on the SPM structure was to increase both the rigidity of the membrane and the MDA production. Chelation of Ca2+ (5 mM) with EGTA (25 mM) did not reverse the increase in the rigidity owing to metabolic alterations of SPM lipids (e.g. production of MDA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A radioligand binding assay has been established to study leukotriene specific binding sites in the guinea pig and rabbit tissues. Using high specific activity [3H]-leukotriene D4 [( 3H]-LTD4), in the presence or absence of unlabeled LTD4, the diastereoisomer of LTD4 (5R,6S-LTD4), leukotriene E4 (LTE4) and the end-organ antagonist, FPL 55712, we have identified specific binding sites for [3H]-LTD4 in the crude membrane fraction isolated from guinea pig lung. The time required for [3H]-LTD4 binding to reach equilibrium was approximately 20 to 25 min at 37 degrees C in the presence of 10 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl. The binding of [3H]-LTD4 to the specific sites was saturable, reversible and stereospecific. The maximal number of binding sites (Bmax), derived from Scatchard analysis, was approximately 320 +/- 200 fmol per mg of crude membrane protein. The dissociation constants, derived from kinetic and saturation analyses, were 9.7 nM and 5 +/- 4 nM, respectively. The specific binding sites could not be detected in the crude membrane fraction prepared from guinea pig ileum, brain and liver, or rabbit lung, trachea, ileum and uterus. In radioligand competition experiments, LTD4, FPL 55712 and 5R,6S-LTD4 competed with [3H]-LTD4. The metabolic inhibitors of arachidonic acid and SKF 88046, an antagonist of the indirectly-mediated actions of LTD4, did not significantly compete with [3H]-LTD4 at the specific binding sites. These correlations indicated that these specific binding sites may be the putative leukotriene receptors in the guinea-pig lung.  相似文献   

6.
G Shyamala 《Biochemistry》1975,14(2):437-444
The specific interaction of glucocorticoids with nuclei of mouse mammary tumor was studied in vitro by incubation of the tissue with [3H]dexamethasone at 25 degrees. It was demonstrated that the mammary tumors contain a limited number of specific nuclear binding sites which were saturated with low hormone concentrations (10-8 M)9 The concentrations of specific binding sites in the nuclei were related to the concentration of cytoplasmic binding sites of unincubated tissues and varied between individual tumors. The binding component in the nuclei appeared to be a protein and was easily solubilized with 0.4 M KCl containing buffers. The ability of various corticoids to block the nuclear localization of the steroid correlated well with their glucocorticoid potency. Estradiol and progesterone at concentrations of 10-6 M were also effective in competing for the glucocorticoid receptor binding sites. However, while the glucocorticoids such as hydrocortisone and corticosterone translocated to nuclear sites also specific for dexamethasone, estradiol and progesterone competed for the cytoplasmic binding sites and did not translocate to the nucleus. The possible significance of the interaction of various steroids with the glucocorticoid receptors in mammary tumors is discussed.  相似文献   

7.
Summary The specific binding of [3H]corticosterone to hepatocytes is a nonsaturable, reversible and temperature-dependent process. The binding to liver purified plasma membrane fraction is also specific, reversible and temperature dependent but it is saturable. Two types of independent and equivalent binding sites have been determined from hepatocytes. One of them has high affinity and low binding capacity (K D=8.8nm andB max=1477 fmol/mg protein) and the other one has low affinity and high binding capacity (K D=91nm andB max=9015 fmol/mg). In plasma membrane only one type of binding site has been characterized (K D=11.2nm andB max=1982 fmol/mg). As it can be deduced from displacement data obtained in hepatocytes and plasma membrane the high affinity binding sites are different from the glucocorticoid, progesterone nuclear receptors and the Na+,K+-ATPase digitalis receptor. Probably it is of the same nature that the one determinate for [3H]cortisol and [3H]corticosterone in mouse liver plasma membrane. Beta-and alpha-adrenergic antagonists as propranolol and phentolamine did not affect [3H]corticosterone binding to hepatocytes and plasma membranes; therefore, these binding sites are independent of adrenergic receptors. The binding sites in hepatocytes and plasma membranes are not exclusive for corticosterone but other steroids are also bound with very different affinities.  相似文献   

8.
Stereoselectivity of the binding sites for the specific kappa-opioid agonist [3H]U-69593, a benzeneacetamido based ligand was investigated in membrane suspension prepared from frog and rat brain, as well as guinea pig cerebellum, using the pure chiral forms of different unlabelled opiates. The ligand binding sites showed stereospecificity with at least three orders of magnitude differences in the affinities (measured as Ki values) of the opioid stereoisomer pairs both in rat and guinea pig membrane fractions. However, in frog brain membranes there was no substantial difference in potencies of the (-) and (+) isomers competing for the [3H]U-69593 binding sites. Another type of the kappa-site preferring opioid ligand, [3H]ethylketocyclazocine, a benzomorphan derivative was able to discriminate between (-) and (+) forms of the same compounds even in frog brain membrane preparation. Our data concerning binding profile of [3H]U-69593 in frog brain membranes are consistent with the observation that kappa opioid binding sites in frog (Rana esculenta) brain differ from those kappa-sites found in mammalian brains.  相似文献   

9.
The localization of histamine H3-receptors in subcellular fractions from the rat brain was examined in a [3H] (R) alpha-methylhistamine binding assay and compared with those of histamine H1- and adrenaline alpha 1- and alpha 2-receptors. Major [3H](R) alpha-methylhistamine binding sites with increased specific activities ([3H]ligand binding vs. protein amount) were recovered from the P2 fraction by differential centrifugation. Minor [3H](R)alpha-methylhistamine binding sites with increased specific activities were also detected in the P3 fraction. Further subfractionation of the P2 fraction by discontinuous sucrose density gradient centrifugation showed major recoveries of [3H](R)alpha-methylhistamine binding in myelin (MYE) and synaptic plasma membrane (SPM) fractions. A further increase in specific activity was observed in the MYE fraction, but the SPM fraction showed no significant increase in specific activity. Adrenaline alpha 2-receptors, the pre-synaptic autoreceptors, in a [3H] yohimbine binding assay showed distribution patterns similar to histamine H3-receptors. On the other hand, post-synaptic histamine H1- and adrenaline alpha 1-receptors were closely localized and distributed mainly in the SPM fraction with increased specific activity. Only a negligible amount was recovered in the MYE fraction, unlike the histamine H3- and adrenaline alpha 2-receptors.  相似文献   

10.
A V Capuco  M T Tseng 《Steroids》1981,37(6):649-662
Study of hormone binding in intact cells enables one to examine binding under conditions which elicit a biological response. Cells from 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors of the rat were enzymatically dispersed. More than 80% of these cells excluded trypan blue and were used to study binding of [3H] estradiol-17 beta. Specific binding was determined by subtracting the amount of [3H]estradiol bound in the absence and presence of 200-fold excess unlabeled estradiol. Specific binding at 37 degrees was maximal after 15 min. Steroid competition studies indicated that [3H]estradiol binding sites were relatively specific for estrogens, although there was a 9-18% inhibition of binding by androgens and progestins when present at 150-fold molar excess. Scatchard analyses of [3H]estradiol (0.15-5.0 nM) binding by whole cells suggest a single, high-affinity binding site (Kd = 7.5 x 10-10M) of low capacity (6.1 fmol/10(6) cells). More [3H]estradiol was translocated to the nucleus after 1 hr at 37 degrees than at 0 degrees. Preliminary studies indicated that incubations at 37 degrees result in appreciable metabolism of [3H]estradiol to other steroids and/or conjugates when examined by silica gel thin layer chromatography.  相似文献   

11.
The specific binding of [3H]5-hydroxytryptamine ([3H]5-HT, [3H]serotonin) to rat cerebral cortex is increased approximately 1.5 to 2.0 fold by cholesterol hydrogen succinate (CHS) and is solubilized into the supernatant fraction by 12 mM CHS. [3H]5-HT binding sites can be constituted by incubating the supernatant fraction obtained from CHS-treated cerebral cortex with cerebellum in which no significant [3H]5-HT binding is detectable. The constituted [3H]5-HT binding could be displaced by unlabeled 5-HT, d-lysergic acid diethylamide (d-LSD) and spiperone as could the binding to cortex membranes. Unlabeled 5-HT, d-LSD and spiperone each inhibited specific [3H]5-HT binding to constituted binding sites by 50% at about 1 X 10(-9) M. Specific [3H]spiperone binding was not detectable in the constituted membranes. Stearic acid which is reported to have similar effects on membrane fluidity as cholesterol also increased specific [3H]5-HT binding in cortical membranes. Stearic acid does not affect specific [3H]spiperone binding. These results suggest that [3H]5-HT and [3H]spiperone binding sites are affected differently by membrane fluidity.  相似文献   

12.
J Strosznajder 《FEBS letters》1989,257(1):110-112
The effect of 10 min ischemia on the activity of phospholipase C acting against [3H]inositol-phosphatidylinositol (PI) and [3H]inositol-phosphatidylinositol 4,5-bisphosphate (PIP2) in the brain subsynaptosomal fractions was investigated. In the presence of endogenous CaCl2, specific activity of phospholipase C acting on phosphatidylinositol was as follows: synaptic cytosol (SC) greater than synaptic vesicles (SV) greater than synaptic plasma membrane SPM). Brain ischemia activated phospholipase C acting on PI by about 60% and 40% in SV and SPM, respectively. The enzyme of synaptic cytosol was not affected by ischemic insult. Phospholipase C acting against PIP2 in the presence of endogenous calcium expressed the specific activity in the following order: SV greater than SPM greater than SC. After 10 min of brain ischemia, activity of phospholipase C acting on PIP2 was significantly suppressed in all subsynaptosomal fractions by about 50-60%. These results indicate that prolonged ischemia produced activation exclusively of phospholipase C acting against phosphatidylinositol.  相似文献   

13.
The binding of [3H]dexamethasone (DEX) to rat liver nuclei in vitro and in vivo have been compared. In vitro, purified nuclei displayed a single class of specific glucocorticoid binding sites with a dissociation constant (Kd) of approximately 10(-7) M for [3H]DEX at 4 degrees C. The glucocorticoid agonists prednisolone, cortisol, and corticosterone and the antagonists progesterone and cortexolone competed avidly for this site, but the potent glucocorticoid triamcinolone acetonide (TA) competed poorly in vitro. Nuclei isolated from the livers of intact rats contained 1-2 X 10(4) [3H]DEX binding sites/nucleus. Up to 85% of the binding sites were recovered in the nuclear envelope (NE) fraction when NE were prepared either before or after labeling with [3H]DEX in vitro. After adrenalectomy, the specific [3H]DEX binding capacity of both nuclei and NE decreased to 15-20% of control values, indicating sensitivity of the binding sites to hormonal status of the animals. Efforts to restore the binding capacity by administration of exogenous glucocorticoids, however, were unsuccessful. After labeling of rat liver nuclei in vivo by intraperitoneal injection of [3H]DEX or [3H]TA into living animals, the steroid specificity and subnuclear localization of radiolabel were different. Both [3H]TA (which did not bind in vitro) and [3H]DEX became localized to nuclei in a saturable fashion in vivo. With either of these ligands, approximately 20% of the total nuclear radiolabel was recovered in the NE fraction. These results suggest the presence of two separate and distinct binding sites in rat liver nuclei, one which is localized to the NE and binds [3H]DEX (but not [3H]TA) in vitro, and another which is not localized to the NE but binds [3H]DEX and [3H]TA in vivo.  相似文献   

14.
The specific binding of the A1 adenosine receptor ligand, [3H]CHA, was investigated in membrane fractions prepared from brains of eleven vertebrate species and ganglia of four invertebrate species. Substantial amounts of specific [3H]CHA binding sites were demonstrated in brain membranes of all vertebrate species examined; however, [3H]CHA binding sites were not detectable in nervous tissue of the invertebrate species studied. The densities of [3H]CHA binding sites in vertebrate brains increase in higher vertebrates. Moreover, the pharmacological characteristics of the site labeled by [3H]CHA in two divergent classes of vertebrates were similar. The broad phylogenetic distribution of A1 adenosine receptors in primitive as well as advanced vertebrate species suggests a fundamental role for adenosine in neuronal modulation.  相似文献   

15.
Using a competitive binding assay the effects of 2-hydroxyestradiol-17 beta, 4-hydroxyestradiol-17 beta, estradiol-17 beta and progesterone on the binding of tritiated catecholaminergic ligands to membrane preparations from rat brain and pituitary gland were studied. Up to a concentration of 10(-5) M none of the steroids tested was able to displace [3H]spiroperidol, [3H]dihydroergocryptine or [3H]dihydroalprenolol. The data suggest that the catecholestrogens do not interfere directly with the binding of catecholaminergic ligands to dopaminergic, alpha-adrenergic or beta-adrenergic receptors in the central nervous system. The view that a catechol structure is not essential for the interaction with dopaminergic receptors was further supported by the results obtained from additional studies on the competition of O-methylated and deaminated dopamine metabolites with [3H]spiroperidol binding.  相似文献   

16.
We recently reported that adenine acts as a neurotrophic factor independent of adenosine or P2 receptors in cultured Purkinje cells [Watanabe S. et al. (2003) J. Neurosci. Res. 74, 754-759], suggesting the presence of specific receptors for adenine in the brain. In this study, the characterization of adenine-binding activity in the rat brain was performed to further characterize the receptor-like adenine-binding sites. Specific binding sites for [(3)H]adenine were detected in membrane fractions prepared from rat brains. The kinetics of [(3)H]adenine binding to membranes was described by the association and dissociation rate constants, 8.6 x 10(5) M(-1) min(-1) and 0.118 +/- 0.045 min(-1), respectively. A single binding site for [(3)H]adenine with a K (D) of 157.1 +/- 20.8 nM and a B (max) of 16.3 +/- 1.1 pmol/mg protein (n = 6) was demonstrated in saturation experiments. A displacement study involving various related compounds showed that the [(3)H]adenine binding was highly specific for adenine. It was also found that [(3)H]adenine-binding activity was inhibited by adenosine, although other adenosine receptor ligands were ineffective as to [(3)H]adenine binding. The brain, especially the cerebellum and spinal cord, showed the highest [(3)H]adenine-binding activity of the tissues examined. These results are consistent with the presence of a novel adenine receptor in rat brain membranes.  相似文献   

17.
Treatment of liver plasma membranes with trypsin at low concentrations (1 to 2 microgram/mg of protein) caused at 3- to 4-fold increase in alpha-specific [3H]epinephrine binding. The change was due to an increase in the number of high affinity binding sites, with no change in the dissociation constant. With increasing trypsin concentrations, the dissociation constant was decreased and there was a progressive loss of binding. Elastase, papain, and thermolysin caused similar effects, whereas the thrombin, leucine aminopeptidase, phospholipase A2, phospholipase C, phospholipase D, and detergents did not cause an increase in [EH]epinephrine binding. The increase in epinephrine high affinity binding sites was correlated with a loss of high affinity [3H]-dihydroergocryptine binding sites which also bind [3H]epinephrine with low affinity (El-Refai, M. F., Blackmore, P. F., and Exton, J. H. (1979) J. Biol. Chem. 254, 4375-4386). Incubation of membranes with the alpha blockers dihydroergocryptine (50 nM) and phenoxybenzamine (20 nM) prior to protease treatment diminished the increase in [3H]epinephrine binding induced by trypsin (1.5 microgram/mg). The concentration dependence and time course of trypsin actions on 70 nM [3H]epinephrine binding and 10 nM [3H]dihydroergocryptine binding are consistent with a trypsin-mediated conversion of low affinity epinephrine binding sites to high affinity epinephrine binding sites.  相似文献   

18.
The evidence for direct muscle relaxant effects of benzodiazepines is controversial. We now show that a crude membrane preparation of rat diaphragm possesses binding sites for [3H]flunitrazepam (FNZ). Scatchard analysis gave a binding site density of 1689 +/- 143 fmol/mg protein (Kd = 25.6 +/- 2.6 nM). These sites are of the "peripheral" type since clonazepam fails to displace [3H]FNZ as effectively as R05-4864 (IC50 values: 7.5 x 10(-6) M and 8 x 10(-9) M, respectively). Diazepam is almost as effective as R05-4864 and potently displaces [3H]FNZ binding (IC50 = 3 x 10(-8) M). We propose that the previously described effects of diazepam on rat diaphragm are mediated through high-affinity binding sites.  相似文献   

19.
The distribution and properties of cytoplasmic binding sites for the synthetic glucocorticoid dexamethasone and the natural glucocorticoid corticosterone in the brain and the pituitary were studied in detail. Cortisol-17 beta acid, a derivative which does not bind to the glucocorticoid receptor but is a competitor of corticosterone binding to plasma, was used to overcome plasma interference. In vitro competition assays in the presence of excess cortisol acid reveal that dexamethasone is as effective a competitor for [3H]corticosterone binding as corticosterone itself. Scatchard analysis of equilibrium experiments with both steroids, using cytosol from various brain areas and from the pituitary yielded linear plots, suggesting one class of binding sites. The quantitative distribution of the sites follows the pattern: cortex greater than hippocampus greater than or equal to pituitary greater than hypothalamus greater than brain stem white matter. Furthermore, kinetic analysis of corticosterone dissociation showed a first order reaction, thus indicating the presence of one type of receptor in all brain areas examined. Rat brain cytosolic receptors for corticosterone and dexamethasone elute from DEAE-Sephadex A-50 anion exchange columns at 0.3 M NaCl in the presence of stabilizing sodium molybdate and at 0.15 M NaCl and/or in the buffer wash when heat-activated, thus exhibiting the characteristic activation pattern of rat liver cytosolic glucocorticoid receptor. The ratio of the buffer wash to the 0.15 M NaCl form is low for dexamethasone and very high for corticosterone. Receptor complexes from various brain parts showed the same activation pattern. In our experiments, brain corticosterone and dexamethasone receptors stabilized by sodium molybdate are indistinguishable by a number of techniques, thus indicating that it is unnecessary to evoke specific binding sites for each glucocorticoid.  相似文献   

20.
Specific receptors for [3H]-15 HETE have been identified on GH3 cells, a cloned strain of rat pituitary cells. With incremental inputs of radioligand and a constant cell number, specific [3H]-15 HETE binding reached a plateau indicative of saturable binding sites. Ligand analysis of the Scatchard plot demonstrated a single class of high affinity binding sites with a dissociation constant (Kd) of 0.75 nM. 12 HETE competed with radiolabeled 15 HETE (IC50 = 1 x 10(-6) +/- 0.8 M). In contrast, arachidonic acid, leukotriene B4, prostaglandins E2 and F2 alpha did not compete with [3H]-15 HETE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号