首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize quantitative trait loci (QTLs), we used marker-assisted selection (MAS) to develop three nearly isogenic lines (NILs) differing only for the presence of a single, specific QTL (QTL-NILs) –Hd1, Hd2, and Hd3 – for heading date in rice. The three lines contained the chromosomal region of the target QTL from donor variety Kasalath(indica) in the genetic background of var. Nipponbare (japonica). To analyze epistatic interactions in pairs of these QTLs, we also used MAS to develop four combined QTL-NILs with 2 of the 3 QTLs or with all 3. Different daylength treatment testing of the QTL-NILs revealed that the three QTLs control photoperiod sensitivity. Genetic analysis of F2 populations derived from crosses between the three QTL-NILs with a single QTL using molecular markers revealed the existence of epistatic interactions between Hd1 and Hd2, and Hd2 and Hd3. These interactions were also confirmed by the analysis of combined QTL-NILs under different daylength conditions. The existence of an epistatic interaction between Hd1 and Hd3 was also clarified. Based on these results, we suggest that the Kasalath allele of Hd3 does not affect photoperiod sensitivity by itself but that it is involved in enhancement of the expression of the Nipponbare alleles of Hd1 and Hd2. Received: 22 October 1999 / Accepted: 21 March 2000  相似文献   

2.
Yamamoto T  Lin H  Sasaki T  Yano M 《Genetics》2000,154(2):885-891
A backcrossed population (BC(4)F(2)) derived from a cross between a japonica rice variety, Nipponbare, as the recurrent parent and an indica rice variety, Kasalath, as the donor parent showed a long-range variation in days to heading. Quantitative trait loci (QTL) analysis revealed that two QTL, one on chromosome 3, designated Hd6, and another on chromosome 2, designated Hd7, were involved in this variation; and Hd6 was precisely mapped as a single Mendelian factor by using progeny testing (BC(4)F(3)). The nearly isogenic line with QTL (QTL-NIL) that carries the chromosomal segment from Kasalath for the Hd6 region in Nipponbare's genetic background was developed by marker-assisted selection. In a day-length treatment test, the QTL-NIL for Hd6 prominently increased days to heading under a 13.5-hr day length compared with the recurrent parent, Nipponbare, suggesting that Hd6 controls photoperiod sensitivity. QTL analysis of the F(2) population derived from a cross between the QTL-NILs revealed existence of an epistatic interaction between Hd2, which is one of the photoperiod sensitivity genes detected in a previous analysis, and Hd6. The day-length treatment tests of these QTL-NILs, including the line introgressing both Hd2 and Hd6, also indicated an epistatic interaction for photoperiod sensitivity between them.  相似文献   

3.
4.
Photoperiod and temperature are two important environmental factors that influence the heading-date of rice. Although the influence of the photoperiod on heading has been extensively reported in rice, the molecular mechanism for the temperature control of heading remains unknown. This study reports an early heading mutant derived from tissue culture lines of rice and investigates the heading-date of wild type and mutant in different photoperiod and temperature treatments. The linkage analysis showed that the mutant phenotype cosegregated with the Hd1 locus. Sequencing analysis found that the mutant contained two insertions and several single-base substitutions that caused a dramatic reduction in Hd1mRNA levels compared with wild type. The expression patterns of Hd1 and Hd3a were also analyzed in different photoperiod and temperature conditions, revealing that Hd1 mRNA levels displayed similar expression patterns for different photoperiod and temperature treatments, with high expression levels at night and reduced levels in the daytime. In addition, Hd1 displayed a slightly higher expression level under long-day and low temperature conditions. Hd3a mRNA was present at a very low level under low temperature conditions regardless of the day-length. This result suggests that suppression of Hd3a expression is a principle cause of late heading under low temperature and long-day conditions.  相似文献   

5.
A late heading-time mutant line, HS276, which was induced by gamma-irradiation of seeds of the japonica rice (Oryza sativa L.) variety Gimbozu, exhibits an extremely long basic vegetative growth phase (BVP). A genetic analysis using the F2 population from the cross between HS276 and Gimbozu revealed that the late heading of HS276 is governed by a single recessive mutant gene. The subsequent analysis on heading responses of HS276 and Gimbozu to four photoperiods (12, 13, 14, and 15 h) and to the photoperiodic transfer treatment from a short photoperiod to a long photoperiod revealed that the mutant gene confers an extremely long BVP and increases photoperiod sensitivity under long photoperiod (14 and 15 h). The BVP durations of HS276 and Gimbozu were estimated at 30.1 and 16.0 days, respectively; the mutant gene, compared with its wild type allele, elongates the duration of BVP by 14 days. Linkage analysis showed that the mutant gene is located in the 129 kb region between the two INDEL markers, INDELAP0399_6 and INDELAP3487_2, on the distal part of the short arm of chromosome 6. None of the other BVP genes are located in this region; therefore, we declared this a newly detected mutant gene and designated it ef7. A recently established program to breed rice suitable for low latitudes, where short photoperiodic conditions continue throughout the year, aims to develop varieties with extremely long BVPs and weak photoperiod sensitivities; the mutant gene ef7, therefore, will be quite useful in these programs because it confers an extremely long BVP and little enhances photoperiod sensitivity under short photoperiod.  相似文献   

6.
7.
The rice japonica cultivars Nipponbare and Koshihikari differ in heading date and response of heading to photoperiod (photoperiod sensitivity). Using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers, we conducted quantitative trait locus (QTL) analyses for heading date in a set of reciprocal backcross inbred lines (BILs) from crosses between Nipponbare and Koshihikari. Under natural-day conditions, transgressive segregation in days to heading (DTH) toward both early and late heading was observed in both BIL populations. QTL analyses revealed that two QTLs-on chromosomes 3 and 6-were involved in the difference in heading date between the parental cultivars. The Nipponbare allele at the QTLs on chromosomes 3 and 6 showed, respectively, increasing and decreasing effects on DTH in both BIL populations. The transgressive segregation observed in the BILs could be accounted for mainly by the complementary action of a set of alleles with opposing effects. Both QTLs were finely mapped as single Mendelian factors in secondary mapping populations (BC(2)F(2) plants/BC(2)F(3) lines). The QTL on chromosome 3 was mapped in the 1,140-kb interval between 94O03-4 (SSR) and OJ21G19-4 (SNP) and was designated Hd16. The QTL on chromosome 6 was mapped in the 328-kb interval between P548D347 (SSR) and 0007O20 (SSR) and was designated Hd17. Both Hd16 and Hd17 were involved in photoperiod sensitivity, as revealed by observation of the DTH of nearly isogenic lines of Nipponbare under short- and long-day conditions, suggesting that allelic differences in both Hd16 and Hd17 account for most of the difference in photoperiod sensitivity between the parental cultivars.  相似文献   

8.
Heading date is a key trait in rice domestication and adaption, and a number of quantitative trait loci (QTLs) have been identified. The rice (Oryza sativa L.) cultivars in the Heilongjiang Province, t...  相似文献   

9.
10.
The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare)   总被引:7,自引:0,他引:7  
Faure S  Higgins J  Turner A  Laurie DA 《Genetics》2007,176(1):599-609
The FLOWERING LOCUS T (FT) gene plays a central role in integrating flowering signals in Arabidopsis because its expression is regulated antagonistically by the photoperiod and vernalization pathways. FT belongs to a family of six genes characterized by a phosphatidylethanolamine-binding protein (PEBP) domain. In rice (Oryza sativa), 19 PEBP genes were previously described, 13 of which are FT-like genes. Five FT-like genes were found in barley (Hordeum vulgare). HvFT1, HvFT2, HvFT3, and HvFT4 were highly homologous to OsFTL2 (the Hd3a QTL), OsFTL1, OsFTL10, and OsFTL12, respectively, and this relationship was supported by comparative mapping. No rice equivalent was found for HvFT5. HvFT1 was highly expressed under long-day (inductive) conditions at the time of the morphological switch of the shoot apex from vegetative to reproductive growth. HvFT2 and HvFT4 were expressed later in development. HvFT1 was therefore identified as the main barley FT-like gene involved in the switch to flowering. Mapping of HvFT genes suggests that they provide important sources of flowering-time variation in barley. HvFTI was a candidate for VRN-H3, a dominant mutation giving precocious flowering, while HvFT3 was a candidate for Ppd-H2, a major QTL affecting flowering time in short days.  相似文献   

11.
Floral transition from the vegetative to the reproductive growth phase is a major change in the plant life cycle and a key factor in reproductive success. In rice (Oryza sativa L.), a facultative short-day plant, numerous flowering time and flower formation genes that control floral transition have been identified and their physiological effects and biochemical functions have been clarified. In the present study, we used a Se14-deficient mutant line (HS112) and other flowering mutant lines to investigate the photoperiodic response, chromosomal location and function in the photoperiod sensitivity of the Se14 gene. We also studied the interactive effects of this locus with other crucial flowering time genes. We found that Se14 is independent of the known photoperiod-sensitive genes, such as Hd1 and Ghd7, and is identical to Os03g0151300, which encodes a Jumonji C (JmjC) domain-containing protein. Expression analysis revealed that the expressions of RFT1, a floral initiator known as a “florigen-like gene”, and Ehd1 were up-regulated in HS112, whereas this up-regulation was not observed in the original variety of ‘Gimbozu’. ChIP assays of the methylation states of histone H3 at lysine 4 (H3K4) revealed that the trimethylated H3K4 in the promoter region of the RFT1 chromatin was significantly increased in HS112. We conclude that Se14 is a novel photoperiod-sensitivity gene that has a suppressive effect on floral transition (flowering time) under long day-length conditions through the modification of chromatin structure by H3K4me3 demethylation in the promoter region of RFT1.  相似文献   

12.
13.
14.
15.
Comparative mapping of cereals has shown that chromosomes of barley, wheat, and maize can be described in terms of rice "linkage segments." However, little is known about marker order in the junctions between linkage blocks or whether this will impair comparative analysis of major genes that lie in such regions. We used genetic and physical mapping to investigate the relationship between the distal part of rice chromosome 7L, which contains the Hd2 heading date gene, and the region of barley chromosome 2HS containing the Ppd-H1 photoperiod response gene, which lies near the junction between rice 7 and rice 4 linkage segments. RFLP markers were mapped in maize to identify regions that might contain Hd2 or Ppd-H1 orthologs. Rice provided useful markers for the Ppd-H1 region but comparative mapping was complicated by loss of colinearity and sequence duplications that predated the divergence of rice, maize, and barley. The sequences of cDNA markers were used to search for homologs in the Arabidopsis genome. Homologous sequences were found for 13 out of 16 markers but they were dispersed in Arabidopsis and did not identify any candidate equivalent region. The implications of the results for comparative trait mapping in junction regions are discussed.  相似文献   

16.
The complex structure of a single Mendelian factor widespread in the Asian cultivated rice ( Oryza sativa ) and its wild progenitor ( Oryza rufipogon ) that caused diverse phenotypes in the timing of flowering under natural field conditions was investigated in near isogenic lines. These near isogenic lines showed differences in flowering time despite all eight accessions collected from tropical regions possessing a recessive gene allelic to the se-pat gene. Fine mapping in two of these near-isogenic lines revealed that cultivated (Patpaku) and wild (W593) accessions had three and two linked quantitative trait loci (QTL) in the candidate regions, respectively, showing that Patpaku and W593 possessed linked QTLs with different effects in addition to the commonly-observed recessive gene ( se-pat ). Molecular dissection suggested that the tandemly duplicated FT-like genes ( Hd3a and RFT1 ) could be the candidate genes for these QTLs. Interestingly, the linked QTLs differed in their epistases, degree of dominance, and genotype × environment interactions. The nucleotide sequences showed that RFT1 has diverged more rapidly than Hd3a during rice evolution, suggesting phenotypic diversification of the two genes. Phylogenetic analysis implied that the se-pat + alleles might have emerged in different lineages within O. sativa . The present results strongly suggest that nucleotide divergence and shuffling of the linked QTLs by recombination might have created novel Mendelian factors that probably contribute to responding to local environments.  相似文献   

17.
Winterhardiness has three primary components: photoperiod (day length) sensitivity, vernalization response, and low temperature tolerance. Photoperiod and vernalization regulate the vegetative to reproductive phase transition, and photoperiod regulates expression of key vernalization genes. Using two barley mapping populations, we mapped six individual photoperiod response QTL and determined their positional relationship to the phytochrome and cryptochrome photoreceptor gene families and the vernalization regulatory genes HvBM5A, ZCCT-H, and HvVRT-2. Of the six photoreceptors mapped in the current study (HvPhyA and HvPhyB to 4HS, HvPhyC to 5HL, HvCry1a and HvCry2 to 6HS, and HvCry1b to 2HL), only HvPhyC coincided with a photoperiod response QTL. We recently mapped the candidate genes for the 5HL VRN-H1 (HvBM5A) and 4HL VRN-H2 (ZCCT-H) loci, and in this study, we mapped HvVRT-2, the barley TaVRT-2 ortholog (a wheat flowering repressor regulated by vernalization and photoperiod) to 7HS. Each of these three vernalization genes is located in chromosome regions determining small photoperiod response QTL effects. HvBM5A and HvPhyC are closely linked on 5HL and therefore are currently both positional candidates for the same photoperiod effect. The coincidence of photoperiod-responsive vernalization genes with photoperiod QTL suggests vernalization genes should also be considered candidates for photoperiod effects.  相似文献   

18.
19.
20.
Mutational load and resource allocation factors and their effects on limiting seed set were investigated in ryegrass by comparative mapping genomics and quantitative trait loci (QTL) analysis in two perennial ryegrass (Lolium perenne) mapping families sharing common genetic markers. Quantitative trait loci for seed-set were identified on chromosome (LG) 7 in both families and on LG4 of the F2/WSC family. On LG7, seed-set and heading date QTLs colocalized in both families and cannot be unequivocally resolved. Comparative genomics suggests that the LG7 region is syntenous to a region of rice LG6 which contains both fertility (S5(n)) and heading date (Hd1, Hd3a) candidate genes. The LG4 region is syntenous to a region of rice LG3 which contains a fertility (S33) candidate gene. QTL maxima for seed-set and heading date on LG4 in the F2/WSC family are separated by c. 8 cm, indicating distinct genetic control. Low seed set is under the control of recessive genes at both LG4 and LG7 locations. The identification of QTLs associated with seed set, a major component of seed yield in perennial ryegrass, indicates that mutational load associated with these genomic regions can be mitigated through marker-assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号