首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to investigate the function of the peptidyl plant growth factor, phytosulfokine-α (PSK-α), in plants, we examined the effect of PSK-α on the growth and chlorophyll content of Arabidopsis seedlings under high night-time temperature conditions. Although exposure to high night-time temperatures markedly reduced the fresh weight and chlorophyll content of the seedlings, these parameters in the plants supplied with PSK-α remained at the same levels as those of non-treated controls. These effects were not apparent when [2-5]PSK, Tyr-SO3H and kinetin were similarly supplied. The results suggest that PSK-α not only promotes cell proliferation, but may aid plants in their tolerance of heat stress.  相似文献   

2.
This study was conducted to determine whether plants in the presence or absence of competition differ in their responses to warming, and whether density modifies the effect of warming. Picea purourea seedlings were grown under ambient and warming (ambient +2.2 °C) conditions in climate control chambers with two different planting densities. After 4 years, seedlings were harvested and measured for height, stem diameter, leaf area, structural biomass, carbon, nitrogen, chlorophyll and carbohydrate levels of needles, branches, stem and roots. At low density, warming increased height, stem diameter, total leaf area biomass production and carbohydrate concentration per seedling, while it decreased C/N ratio for all plant parts, but did not affect chlorophyll content. By contrast, at high density, although warming increased biomass and total leaf area, it did not affect plant height and stem diameter. At the same time, it had different effects on chlorophyll content, C/N ratio and carbohydrate levels among plant parts. On the other hand, high density limited plant growth and altered resource allocation pattern. Our study demonstrates that planting densities decreased the temperature-induced growth enhancement of P. purpurea seedlings and the effects of warming on resource allocation not only showed density-dependence, but also vary with tissue age classes and root diameter; the responses of plants to elevated temperature, acquired from plants growing as individuals, may not be applicable to plants grown under intraspecific competition as typically found in the field.  相似文献   

3.
A rapid, noninvasive technique involving imaging of chlorophyll fluorescence parameters for detecting perturbations of leaf metabolism and growth in seedlings is described. Arabidopsis seedlings were grown in 96-well microtitre plates for 4 d and then treated with eight herbicides with differing modes of action to induce perturbations in a range of different metabolic processes. Imaging of chlorophyll fluorescence emissions from 96 seedlings growing on a microtitre plate enabled images of a number of fluorescence parameters to be rapidly and simultaneously produced for the plants in each well. Herbicideinduced perturbations in metabolism, even in metabolic reactions not directly associated with photosynthetic metabolism, were detected from the changes in the images of fluorescence parameters considerably before any visual effects on seedling growth were observed. Evaluations of seedling growth were made from measurements of the area of chlorophyll fluorescence emission in images of plants growing in the 96-well plates. Decreased seedling growth related directly to herbicideinduced changes in the imaged chlorophyll fluorescence parameters. The applicability of this rapid-screening technique for metabolic perturbations in monocotyledonous species was demonstrated by treating Agrostis tenuis seedlings with Imazapyr, an inhibitor of branched-chain amino acid synthesis.  相似文献   

4.
Transgenic rice plants in which the content of dienoic fatty acids was increased as a result of co-suppression of fatty acid desaturase were more tolerant to high temperatures than untransformed wild-type plants, as judged by growth rate and chlorophyll content. When untransformed wild-type and transgenic rice seedlings were incubated at 35 °C, seedlings of the transgenic rice lines showed approximately 1.6 and 2.1 times the growth of untransformed wild-type seedlings, as assayed by shoot and root mass, respectively. The chlorophyll content of the transgenic leaves after 9 d at 35 °C was also higher than that of wild-type rice. The maximum photochemical efficiency of photosystem 2 was also higher in transgenic plants than in wild-type plants upon high temperature stress.  相似文献   

5.
Summary The irrigation water in use at the Punjab University New Campus is of good quality except the water of one tubewell which is relatively poor (high-salinity and low-sodium water) and has 0.45 ppm boron. Water with a boron content of upto 3.00 ppm did not affect the germination of the seeds of wheat (Triticum vulgare L. var. Mexi-Pak) and there was some stimulation of the growth of seedlings by an increase in the concentration of boron beyond 0.45 ppm. However, these seedlings, when transplanted to the soils supplied with waters containing different amounts of boron, showed a decrease in their growth at higher concentrations of boron with their ageing, and when these plants were about 100 days old and almost mature, their growth decreased significantly with an increase in the concentration of boron to 2.00 or 3.00 ppm in the water supplied to them. The growth of the plants of Mexi-Pak wheat is inversely related to the boron content of their tissues when it is more than 0.60 ppm. Mexi-Pak wheat is semi-tolerant to boron. re]19750605  相似文献   

6.
燕江伟  李昌晓  崔振  刘媛 《生态学报》2017,37(21):7242-7250
为探究干旱条件下,互叶醉鱼草(Buddleja alternifolia Maxim.)幼苗对重金属镉胁迫的生长及光合生理响应机制,以两年生互叶醉鱼草幼苗为试验材料,设置对照与干旱两个水分处理组(土壤相对含水率分别为:65%—60%,35%—30%),每个水分处理条件下再分别设置3个镉处理浓度(0.28、(0.6+0.28)、(1.2+0.28)mg/kg),共6个处理。测定不同水分及镉处理对互叶醉鱼草生长、生物量、光合参数及体内重金属含量的影响。结果表明:干旱与镉复合胁迫下植物的存活率为100%。镉胁迫、干旱与镉复合胁迫均不同程度抑制了互叶醉鱼草幼苗生长、生物量积累、植株的光合作用及叶绿素含量,且其光合和叶绿素含量的降幅明显大于单一镉胁迫。镉胁迫下,互叶醉鱼草幼苗单株最高镉富集量为69.33 mg/kg,而复合胁迫下单株最高镉富集量为50.68 mg/kg。以上结果表明:干旱胁迫能够加重镉胁迫对植物的影响,使复合胁迫下互叶醉鱼草生长、光合生理及镉富集能力下降。但单一镉胁迫下,互叶醉鱼草对镉具有更强的耐受性,并有较高的生物富集能力,且干旱与Cd复合胁迫下互叶醉鱼草幼苗仍有一定的镉积累量。因此在干旱半干旱区园林绿化以及Cd污染地区的生态建设中,互叶醉鱼草是一种具有巨大应用潜力和前景的灌木树种。  相似文献   

7.
土壤有效硅对大豆生长发育和生理功能的影响   总被引:19,自引:0,他引:19  
人工调节土壤有效硅含量及盆栽试验,研究土壤有效硅对大豆生长发育和生理功能的影响。结果表明,土壤有效硅含量在55.1~202.8mg·kg^-1范围内,随着土壤有效硅含量的提高,大豆种子萌发过程中蛋白酶和脂肪酶活性升高,淀粉酶活性无显著变化,呼吸速率加快,种子活力升高,萌发速度加快,种子萌发率无显著变化;幼苗生长过程中叶片叶绿素含量无显著变化,光合速率加快,根系活力、硝酸还原酶活力升高,蒸腾强度减弱,水分利用效率和叶含水量升高,抗旱保水能力提高。大豆幼苗含硅量与土壤有效硅含量呈线性正相关趋势(r=0.994)。土壤有效硅含量大于2028mg·kg^-1,生理功能不再显著变化,说明土壤中的硅被大豆吸收后,改善了大豆萌发种子和幼苗的生理功能,使种子萌发和幼苗生长加快。  相似文献   

8.
We investigated how light and CO2 levels interact to influence growth, phenology, and the physiological processes involved in leaf senescence in red oak (Quercus rubra) seedlings. We grew plants in high and low light and in elevated and ambient CO2. At the end of three years of growth, shade plants showed greater biomass enhancement under elevated CO2 than sun plants. We attribute this difference to an increase in leaf area ratio (LAR) in shade plants relative to sun plants, as well as to an ontogenetic effect: as plants increased in size, the LAR declined concomitant with a decline in biomass enhancement under elevated CO2 Elevated CO2 prolonged the carbon gain capacity of shade‐grown plants during autumnal senescence, thus increasing their functional leaf lifespan. The prolongation of carbon assimilation, however, did not account for the increased growth enhancement in shade plants under elevated CO2. Elevated CO2 did not significantly alter leaf phenology. Nitrogen concentrations in both green and senesced leaves were lower under elevated CO2 and declined more rapidly in sun leaves than in shade leaves. Similar to nitrogen concentration, the initial slope of A/Ci curves indicated that Rubisco activity declined more rapidly in sun plants than in shade plants, particularly under elevated CO2. Absolute levels of chlorophyll were affected by the interaction of CO2 and light, and chlorophyll content declined to a minimal level in sun plants sooner than in shade plants. These declines in N concentration, in the initial slope of A/Ci curves, and in chlorophyll content were consistent with declining photosynthesis, such that elevated CO2 accelerated senescence in sun plants and prolonged leaf function in shade plants. These results have implications for the carbon economy of seedlings and the regeneration of red oak under global change conditions.  相似文献   

9.
Phytosulfokine-alpha (PSK-alpha), a unique plant peptide growth factor, was originally isolated from conditioned medium of asparagus (Asparagus officinalis) mesophyll cell cultures. PSK-alpha has several biological activities including promoting plant cell proliferation. Four genes that encode precursors of PSK-alpha have been identified from Arabidopsis. Analysis of cDNAs for two of these, AtPSK2 and AtPSK3, shows that both of these genes consist of two exons and one intron. The predicted precursors have N-terminal signal peptides and only a single PSK-alpha sequence located close to their carboxyl termini. Both precursors contain dibasic processing sites flanking PSK, analogous to animal and yeast prohormones. Although the PSK domain including the sequence of PSK-alpha and three amino acids preceding it are perfectly conserved, the precursors bear very limited similarity among Arabidopsis and rice (Oryza sativa), suggesting a new level of diversity among polypeptides that are processed into the same signaling molecule in plants, a scenario not found in animals and yeast. Unnatural [serine-4]PSK-beta was found to be secreted by transgenic Arabidopsis cells expressing a mutant of either AtPSK2 or AtPSK3 cDNAs, suggesting that both AtPSK2 and AtPSK3 encode PSK-alpha precursors. AtPSK2 and AtPSK3 were expressed demonstrably not only in cultured cells but also in intact plants, suggesting that PSK-alpha may be essential for plant cell proliferation in vivo as well as in vitro. Overexpression of either precursor gene allowed the transgenic calli to grow twice as large as the controls. However, the transgenic cells expressing either antisense cDNA did not dramatically decrease mitogenic activity, suggesting that these two genes may act redundantly.  相似文献   

10.
Wenger  K.  Gupta  S. K.  Furrer  G.  Schulin  R. 《Plant and Soil》2002,242(2):217-225
White spruce [Picea glauca (Moench) Voss] seedlings were inoculated with Hebeloma crustuliniforme and treated with 25 mM NaCl to examine the effects of salinized soil and mycorrhizae on root hydraulic conductance and growth. Mycorrhizal seedlings had significantly greater shoot and root dry weights, number of lateral branches and chlorophyll content than non-mycorrhizal seedlings. Salt treatment reduced seedling growth in both non-mycorrhizal and mycorrhizal seedlings. However, needles of salt-treated mycorrhizal seedlings had several-fold higher needle chlorophyll content than that in non-mycorrhizal seedlings treated with salt. Mycorrhizae increased N and P concentrations in seedlings. Na levels in shoots and roots of salt-treated mycorrhizal seedlings were significantly lower and root hydraulic conductance was several-fold higher than in non-mycorrhizal seedlings. A reduction of about 50% in root hydraulic conductance of mycorrhizal seedlings was observed after removal of the fungal hyphal sheath. Transpiration and root respiration rates were reduced by salt treatments in both groups of seedlings compared with the controls, however, both transpiration and respiration rates of salt-treated mycorrhizal seedlings were as high as those in the non-mycorrhizal seedlings that had not been subjected to salt treatment. The reduction of shoot Na uptake while increasing N and P absorption and maintaining high transpiration rates and root hydraulic conductance may be important resistance mechanisms in ectomycorrhizal plants growing in salinized soil.  相似文献   

11.
The objective of this study was to investigate the effects of arbuscular mycorrhizal fungus (AMF) inoculation on growth and drought tolerance of Poncirus trifoliata seedlings. The seedlings were inoculated with or without Glomus mosseae before exposure to a short-term (3 days) water depletion, and relevant physiological and biochemical parameters (plant height, chlorophyll content, relative water content, activity of antioxidant enzymes) and expression patterns of several stress-responsive genes were examined. Inoculation with G. mosseae led to growth promotion of the seedlings, as revealed by larger plant height and higher relative water and chlorophyll contents. When subjected to drought treatment, the AMF-inoculated (AM) plants showed better tolerance than the nonmycorrhizal (NAM) plants. Under drought, the AM plants exhibited higher level of proline and activity of two antioxidant enzymes, superoxide dismutase (SOD) and peroxidase (POD). In addition, mRNA abundance of four genes involved in reactive oxygen species homeostasis and oxidative stress battling was higher in the AM plants when compared with the NAM plants. These results indicate that AMF inoculation stimulated growth and enhanced drought tolerance of the seedlings, which may be due to activation of an arsenal of physiological, biochemical and molecular alterations.  相似文献   

12.
Experiments were carried out to investigate the role of nitric oxide (NO) in ameliorating the negative effects of cadmium stress in tomato seedlings. Plants treated with cadmium (CdCl2, 150 μM) showed reduced growth, biomass yield, pigment content, chlorophyll fluorescence, and gas exchange parameters. Exogenous application of NO donor (sodium nitroprusside) with nutrient solution protected chlorophyll pigments, restored chlorophyll fluorescence and gas exchange parameters, and caused significant enhancements in growth and biomass yield. Cadmium triggered the synthesis of proline and glycine betaine; however, application of NO caused further enhancement of their accumulation, reflecting an obvious amelioration of the cadmium-induced decline in relative water content. Activities of the antioxidant enzymes superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase, and other enzymatic activities of ascorbate-glutathione cycle were enhanced following the application of NO, as compared with those in untreated seedlings under control and cadmium stress conditions. NO increased the flavonoid and total phenol content in Cd-stressed tomato plants. Moreover, NO application restricted the uptake of cadmium and enhanced the accumulation of nutrients in different parts of tomato plants. On the basis of the findings of the present study, we propose that NO has a potential role as a growth promoter for tomato under cadmium stress.  相似文献   

13.
Phytosulfokine-alpha (PSK-alpha) is a small plant peptide (5 amino acids) that displays characteristics typically associated with animal peptide hormones. PSK-alpha was originally isolated based on its mitogenic activity with plant cultures; it has been reported to increase production of tropane alkaloids from Atropa belladonna, although its general influence on secondary metabolite production is unknown. The studies reported in this article were initiated to evaluate the effects of PSK-alpha supplementation on production of Taxol (paclitaxel) from plant cell cultures of Taxus sp. particularly when methyl jasmonate (MeJA) is added as an elicitor of secondary metabolism. The response to PSK-alpha supplementation was cell line dependent. Taxus cuspidata P93AF showed no statistically significant response to PSK-alpha supplementation while Taxus canadensis C93AD and T. cuspidata PO93X displayed a concentration-dependent response (up to 100 nM PSK-alpha added in first 24 h of culture) with a decrease in initial growth rate, an increase in cell density (dry weight/fresh weight), and increased Taxol production. More remarkably with T. canadensis (C93AD), a very strong synergistic response of PSK-alpha (100 nM) and methyl jasmonate (MeJA, 100 microM) elicitation was observed, resulting in Taxol level of 35.3 +/- 2.1 mg/L or 1.83 +/- 0.02 mg Taxol/g dry cell weight achieved at day 21, a level of approximately 10-fold higher than for either treatment by itself. Although the level of Taxol production achieved is not remarkable, this synergistic treatment was able to partially revive taxane production in cultures that have lost productivity due to extended time (over 10 years) in continuous subculture.  相似文献   

14.
Water resource development has altered the hydrological regime on the Lower Balonne River in Queensland, Australia. Concerns have been raised about possible impacts to floodplain plant communities, which support a pastoral industry and a range of native fauna. Water and nutrients commonly limit plant growth in south central Queensland, where the climate is semi-arid and the soils are infertile. Floodplain plant productivity is boosted by inundation with water, but the role of flooding in nutrient provision is not known. Growth experiments and a pilot soil survey were conducted to help determine if soil nutrient deficiencies exist and if regular flooding is required to maintain floodplain soil fertility. Soils were sampled from areas representing three flood frequency classes: high, moderate, and low. Chemical extractions were performed as a surrogate for `bioavailable' nutrients. Soil nitrogen (N) but not phosphorus (P) limited the growth of seedlings of wheat (Triticum aestivum L. Gardia) based on responses to nutrient additions: plants supplied with N had greater shoot length and total biomass than plants without N. Clear evidence of an effect of flood frequency on fertility was not revealed. Neither soil P, soil N, nor plant growth varied significantly with flood frequency. However, this analysis had low statistical power. There were trends for greater biomass of seedlings grown on moderately flooded soils and thinner roots for seedlings grown on frequently flooded soils, but neither of these growth responses was clearly linked to nutrient limitation. Nevertheless, the possibility that flooding provides a nutrient subsidy to plants cannot be ruled out because of a number of factors, including the statistical power of this analysis and the possibility that short-term nutrient subsidies occur with floods.  相似文献   

15.
通过室内盆栽实验研究了大气颗粒污染物硫酸铵对香樟幼苗生长及光合特性的影响。结果表明,香樟幼苗叶片涂抹硫酸铵处理对植物生长无显著影响;低浓度硫酸铵(2 g·L^-1)提高了叶片叶绿素含量,而高浓度(4 g·L^-1)却降低了叶片叶绿素含量;与对照相比,低浓度处理的香樟叶片净光合速率、气孔导度、胞间二氧化碳浓度与蒸腾速率无显著差异;高浓度处理的香樟叶片净光合速率与蒸腾速率高于对照,而气孔导度与胞间二氧化碳浓度与对照无显著差异。机理分析表明,硫酸铵颗粒物主要通过影响叶片气孔导度来影响植物光合特性。  相似文献   

16.
A growth experiment was conducted using seedlings of three early-successional, tropical, woody species:Dillenia suffruticosa (Dilleniaceae),Macaranga heynei (Euphorbiaceae) andTrema tomentosa (Ulmaceae). These species are characteristic of different positions along a soil fertility gradient in Singapore, withD. suffruticosa being the least andT. tomentosa the most demanding of high nutrient availability. The seedlings were grown in vermiculite at either low or high nutrient availabilities supplied by watering with different concentrations of a commercial plant food. Half the seedlings were subjected to a 50% defoliation at the start of the experiment by cutting off the distal half of each leaf. After 9 weeks the plants were harvested.Macaranga heynei andT. tomentosa seedlings showed no significant difference in parameters of growth such as total dry weight and total leaf area between the defoliated and control seedlings. The seedlings compensated completely for the loss of leaf area.Dillenia suffruticosa did show significant reductions in growth in some parameters due to defoliation, and these were more pronounced under the high nutrient treatment. These findings support the hypothesis that plants characteristic of resource-rich sites can readily recover from herbivory through fast growth, probably associated with a rapid turnover of leaves, whereas species of resource-poor habitats cannot easily replace losses due to herbivory and are adversely effected by defoliation.  相似文献   

17.
The effects of Ni and Cd on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings were investigated in a pot experiment. Seedlings were either inoculated with Laccaria bicolor (Maire) Orton or left uninoculated before being planted in pots containing a mixture of sandy soil from the B-horizon of a coniferous forest, small stones and pure quartz sand. The pots were supplied with small amounts of a balanced nutrient solution every 24 h using peristaltic pumps. Nickel or Cd were added as chlorides to the nutrient solution at levels of 85 M Ni (Ni 1), 170 M Ni (Ni 2), or 8.9 M Cd. Mycorrhizal colonisation of the roots was nearly 100% in the mycorrhizal treatments. The mycorrhizal seedlings grew significantly better than the non-mycorrhizal ones. The weight of mycorrhizal seedlings in the Ni 2 treatment was 29% lower than that of the mycorrhizal controls, but still 34% greater than that of the non-mycorrhizal seedlings not exposed to metals. There was an overall, statistically significant, negative effect of metals on plant yield. Mycorrhizal plants had lower root:shoot (R:S) ratios than non-mycorrhizal plants and the R:S ratio was increased by metal exposure, particularly in the non-mycorrhizal seedlings. Plant concentrations of Cd or Ni were not affected by mycorrhizal colonisation, but total uptake of Cd and Ni was higher in bigger mycorrhizal seedlings. Nickel decreased P concentration in all seedlings and Cd decreased P concentration in the non-mycorrhizal seedlings. Generally, the mycorrhizal seedlings grew better than non-mycorrhizal ones and had better P, K, Mg and S status. Root growth was not significantly affected by the metal treatments. The reduction in mean shoot growth of non-mycorrhizal plants, relative to the metal-free control, appeared higher than in mycorrhizal plants but was not statistically significant due to high variation in the non-mycorrhizal plants not exposed to metals. The main mycorrhizal effect was thus increased nutrient uptake and growth of the seedlings.  相似文献   

18.
土壤水分对温室春黄瓜苗期生长与生理特性的影响   总被引:14,自引:1,他引:13  
以津优1号黄瓜为试验材料.研究了土壤不同水分含量对温室春黄瓜苗期生长与生理特性的影响。结果表明,在土壤水分为田间持水量90%时.黄瓜幼苗长势健壮,茎粗大,根系活力强,叶绿素含量和光合速率高.与其它处理差异显著,说明土壤含水量过高或过低均不利于培育黄瓜壮苗。株高和叶面积随土壤含水量的升高而增加;细胞汁液浓度随土壤含水量的升高而降低.且对植株水分状况反应十分敏感,可以用来作为判断植株水分盈亏状况的生理指标。  相似文献   

19.
The effects of Mn nutrition of tomato (Lycopersicon esculentum Mill.) seedlings on Mn-, Fe- and CuZn-superoxide dismutase (SOD, EC 1.15.1.1) enzymatic activities, metal translocation, chlorophyll concentration, and plant growth were tested using a bioassay system consisting of chelator-buffered nutrient culture with Mn2+ activities set to pMn (-log activity of Mn2+) of 6.6, 7.6, 8.6, and 9.6. The two middle levels resulted in optimal plant growth, whereas the two extreme levels resulted in a gradual decrease in chlorophyll concentration and slower plant growth. At the end of the experiment, 26 days after transfer to the Mn treatments, significant differences in shoot Mn concentration were manifested, from 10.5 mg kg(-1) in plants grown in pMn 9.6 to 207.4 mg kg(-1) in plants grown in pMn 6.6. Other element concentrations in the leaf suggest that growth inhibition and chlorophyll synthesis were affected primarily by manganese deficiency and excess. Twenty days after transfer of plants to the Mn treatments Mn-, Fe- and CuZn-SOD activities were assayed in young expanded leaf tissues by electrophoresis running gel. Whereas chloroplastic CuZn-SOD activity did not differ among Mn treatments, the cytosolic CuZn-SOD and mitochondrial Mn-SOD activities increased in both Mn-excess and Mn-deficient plants.  相似文献   

20.
Sugars are key regulatory molecules that affect diverse processes in higher plants. Hexokinase is the first enzyme in hexose metabolism and may be a sugar sensor that mediates sugar regulation. We present evidence that hexokinase is involved in sensing endogenous levels of sugars in photosynthetic tissues and that it participates in the regulation of senescence, photosynthesis, and growth in seedlings as well as in mature plants. Transgenic tomato plants overexpressing the Arabidopsis hexokinase-encoding gene AtHXK1 were produced. Independent transgenic plants carrying single copies of AtHXK1 were characterized by growth inhibition, the degree of which was found to correlate directly to the expression and activity of AtHXK1. Reciprocal grafting experiments suggested that the inhibitory effect occurred when AtHXK1 was expressed in photosynthetic tissues. Accordingly, plants with increased AtHXK1 activity had reduced chlorophyll content in their leaves, reduced photosynthesis rates, and reduced photochemical quantum efficiency of photosystem II reaction centers compared with plants without increased AtHXK1 activity. In addition, the transgenic plants underwent rapid senescence, suggesting that hexokinase is also involved in senescence regulation. Fruit weight, starch content in young fruits, and total soluble solids in mature fruits were also reduced in the transgenic plants. The results indicate that endogenous hexokinase activity is not rate limiting for growth; rather, they support the role of hexokinase as a regulatory enzyme in photosynthetic tissues, in which it regulates photosynthesis, growth, and senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号