首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In recent years, the green approach of nanoparticle synthesis by biological entities has been gaining great interest over various other physico-chemical methods, which are laden with many disadvantages. The important challenging issues in current nanotechnology include the development of reliable experimental techniques for the synthesis of nanoparticles of different compositions and sizes along with high monodispersity. Biological systems offer unique promising features to tailor nanomaterials with predefined properties. Fungi are the favorite choice of microorganisms due to the wide variety of advantages they offer over bacteria, yeast, actinomycetes, plants, and other physico-chemical techniques. The use of microorganisms for the deliberate synthesis of nanoparticles is a fairly new and exciting area of research with considerable potential for further development. This review describes an overview of the current green approaches for the synthesis of nanoparticles with particular emphasis on fungi, which are gaining worldwide popularity as nano-factories for the green synthesis of nanoparticles.  相似文献   

2.
In the field of nanotechnology, silver nanoparticles have been considered a promising antibacterial material for a century. The potential applications of graphene-based materials are increasingly recognized for their special physico-chemical and biological properties. In particular, graphene and graphene oxide as the foundation of nanocomposites have garnered much interest among researchers in many fields. In this review, we concentrate on different aspects of silver nanoparticle composites with graphene and graphene oxide, focusing on their synthesis methods, special characteristics, and antibacterial properties; we also briefly discuss limitations and future research.  相似文献   

3.
Nanomaterials are at the leading edge of the rapidly developing field of nanotechnology. The development of reliable experimental protocols for the synthesis of nanomaterials over a range of chemical compositions, sizes, and high monodispersity is one of the challenging issues in current nanotechnology. In the context of the current drive to develop green technologies in material synthesis, this aspect of nanotechnology is of considerable importance. Biological systems, masters of ambient condition chemistry, synthesize inorganic materials that are hierarchically organized from the nano- to the macroscale. Recent studies on the use of microorganisms in the synthesis of nanoparticles are a relatively new and exciting area of research with considerable potential for development. This review describes a brief overview of the current research worldwide on the use of microorganisms in the biosynthesis of metal nanoparticles and their applications.  相似文献   

4.
Over the past two decades nanotechnology has become an important part of novel medical research. Researchers have made great progress in developing nanotechnology applications used for detecting and treating oncological diseases. Recently, many research groups have focused on the use of superparamagnetic iron oxide nanoparticles (SPIONs) in cancer treatment. Due to the range of therapeutic properties and possibilities of various modifications, SPIONs are a promising and multifunctional tool in various cancer therapies and may help to overcome the limitations of conventional therapies. Moreover, it is still necessary to develop new methods of treatment with expected properties, such as lower toxicity, long-lasting effectiveness and higher selectivity. Analyzing the literature data, we found that currently SPIONs are used in the transport of drugs, immunotherapy and hyperthermia. The main aim of this review is to present various cancer treatment therapies utilizing SPIONs, the importance of the experiments carried out by research groups and further perspectives in the nanotechnological use of SPIONs.  相似文献   

5.
Silver nanoparticles are well received in the cosmeceutical industry due to their broad spectrum of pharmacology applications. Research on the therapeutic properties exhibited by silver nanoparticles revealed that the antimicrobial and anti-inflammatory properties are the main attraction in the establishment of nanocosmeceutical products whereby their mechanisms of action are reviewed in this paper. In addition, studies on other uses of silver nanoparticles acknowledged that the particles act as antifungal agents in nail polishes and pigments in coloured beauty products such as lipsticks and eye shadows. Despite the extensive use of silver nanoparticles in the cosmetic line, there are still limited resources on the mechanism of actions and the effect of the particles on the bio-functionality of the body. The safety of silver nanoparticles could be comprehended from their skin penetration ability and toxicity to the human body in which it could be justified that both features are mainly influenced by the morphology of the particles and the method of application. This article summarizes exclusively on the synthesis of silver nanoparticles, the biomedical mechanisms and applications as well the limitations with respect to skin penetration ability and toxicity effects which will contribute significantly to the vast research on the association of nanotechnology and cosmetics.  相似文献   

6.
Nanoparticles, the elementary structures of nanotechnology, are important materials for fundamental studies and variety of applications. The different sizes and shapes of these materials exhibit unique physical and chemical properties than their bulk materials. There is a great interest in obtaining well-dispersed, ultrafine, and uniform nanoparticles to delineate and utilize their distinct properties. Nanoparticle synthesis can be achieved through a wide range of materials utilizing a number of methods including physical, chemical, and biological processes with various precursors from liquids and solids. There is a growing need to prepare environmentally friendly nanoparticles that do not produce toxic wastes in their process synthesis protocol. This kind of synthesis can be achieved by green environment benign processes, which happen to be mostly of a biological nature. Microorganisms are one of the most attractive and simple sources for the synthesis of different types of nanoparticles. This review is an attempt to provide the up-to-date information on current status of nanoparticle synthesis by different types of microorganisms such as fungi, yeast, bacteria, cyanobacteria, actinomycete, and algae. The probable biosynthesis mechanism and conditions for size/shape control are described. Various applications of microbially synthesized nanoparticles are summarized. They include antibacterial, antifungal, anticancer, larvicidal, medical imaging, biosensor, and catalytic applications. Finally, limitations and future prospects for specific research are discussed.  相似文献   

7.
癌症是当今威胁人类健康的主要疾病之一。近年来提出的近红外光介导的光热治疗,能够对肿瘤组织进行定点清除并且对正常组织具有较低的毒副作用,为肿瘤的治疗提供了新的方法。开发具有良好生物相容性的高效光热偶联剂是发展光热治疗的首要条件。随着纳米技术的飞速发展,一些金属纳米结构由于具有独特的光学特性作为光热偶联剂被广泛应用到肿瘤的光热治疗中。然而,成本高昂、制备过程繁琐以及光热稳定性较差等不足,限制了这些纳米材料的进一步应用。最新报道的新型光热偶联剂半导体硫化铜纳米粒子(copper sulfide nanoparticles,CuS NPs),由于其具有制备工艺简单、成本低廉、突出的光热稳定性和良好的生物相容性等优势,成为了当今纳米医学领域研究的热点。本文主要综述了CuS纳米粒子在肿瘤光热治疗和影像诊断方面的应用研究,并对CuS纳米粒子在生物医学领域应用中存在的问题和未来的研究方向进行了展望。  相似文献   

8.
Microbial processing of tellurium as a tool in biotechnology   总被引:1,自引:0,他引:1  
Here, we overview the most recent advances in understanding the bacterial mechanisms that stay behind the reduction of tellurium oxyanions in both planktonic cells and biofilms. This is a topic of interest for basic and applied research because microorganisms are deeply involved in the transformation of metals and metalloids in the environment. In particular, the recent observation that toxic tellurite can be precipitated either inside or outside the cells being used as electron sink to support bacterial growth, opens new perspectives for both microbial physiologists and biotechnologists. As promising nanomaterials, tellurium based nanoparticles show unique electronic and optical properties due to quantum confinement effects to be used in the area of chemistry, electronics, medicine and environmental biotechnologies.  相似文献   

9.
Fungi show a variety of abilities in affecting metal speciation, toxicity, and mobility and mineral formation, dissolution or deterioration through several interacting biomechanical and biochemical mechanisms. A consequence of many metal-mineral interactions is the production of nanoparticles which may be in elemental, mineral or compound forms. Organisms may benefit from such nanomaterial formation through removal of metal toxicity, protection from environmental stress, and their redox properties since certain mycogenic nanoparticles can act as nanozymes mimicking enzymes such as peroxidase. With the development of nanotechnology, there is growing interest in the application of biological systems for nanomaterial production which may provide economic benefits and a lower damaging environmental effect than conventional chemical synthesis. Fungi offer some advantages since most are easily cultured under controlled conditions and well known for the secretion of metabolites and enzymes related to nanoparticle or nanomineral formation. Nanoparticles can be formed intracellularly or extracellularly, the latter being favourable for easy harvest, while the cell wall also provides abundant nucleation sites for their formation. In this article, we focus on the synthesis of nanoparticles and nanominerals by fungi, emphasizing the mechanisms involved, and highlight some possible applications of fungal nanomaterials in environmental biotechnology.  相似文献   

10.
近年来,纳米硒凭借其良好的导电、光热以及抗癌等特性,在纳米技术、生物医学以及环境修复等诸多领域得到广泛应用。实验选择前期筛选得到的贪铜杆菌Cupriavidus sp. SHE,文中探究了该菌株的细胞上清液、全细胞以及胞内提取物合成纳米硒的能力,并对细胞上清液合成的纳米硒进行形貌表征与官能团分析,最后选取革兰氏阳性菌假单胞菌Pseudomonas sp. PI1和革兰氏阴性菌大肠杆菌Escherichia coli BL21进行抗菌实验。结果表明,菌株Cupriavidussp.SHE的细胞上清液、全细胞以及胞内提取物均具有合成纳米硒的能力。对于菌株Cupriavidus sp. SHE细胞上清液而言,在该实验中,研究范围内其合成纳米硒的最佳条件是SeO2浓度为5 mmol/L,pH为7。透射电子显微镜结果表明合成的纳米硒颗粒主要为球形,平均直径为196nm。X射线衍射结果表明合成的纳米硒晶体类型为六方形结构。傅立叶转换红外光谱和聚丙烯酰胺凝胶电泳结果表明纳米硒表面有小分子蛋白结合,可能参与了纳米硒的合成和稳定过程。此外,抗菌实验表明菌株Cupriavidus sp. SHE细胞上清液合成的纳米硒颗粒对菌株E.coli BL21和Pseudomonas sp. PI1均无明显的抗菌活性。综上,该研究表明菌株Cupriavidus sp.SHE在细胞上清液中产生的蛋白类物质在其合成纳米硒的过程中发挥了重要作用,合成的生物纳米硒颗粒无毒且生物相容性良好,未来在生物医学等领域具有较好的应用潜力。  相似文献   

11.

Background  

Nanoparticles (NPs) can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. Since the properties of NPs differ from that of their bulk materials, they are being increasingly exploited for medical uses and other industrial applications. The aim of the present study was to investigate the particle-size effect of gold nanoparticles (GNPs) on the hepatic tissue in an attempt to cover and understand the toxicity and the potential threat of their therapeutic and diagnostic use.  相似文献   

12.
Green synthesis of metallic nanoparticles has become a promising field of research in recent years. Syntheses of gold and silver nanoparticles by various chemical and physical methods as well as the biosynthetic approach mediated by numerous microorganisms have been actively researched. A more scalable and economic route to produce these metallic nanoparticles would be through the plant-mediated synthetic approach. Owing to the biodiversity of plant biomasses, the mechanism by which bioconstituents of plants have contributed to the synthetic process is yet to be fully understood. Nevertheless, the feasibility of controlling the shape and size of nanoparticles by varying the reaction conditions has been demonstrated in many studies. This paper provides an overview of the plant-mediated syntheses of gold and silver nanoparticles, possible compounds and mechanisms that might be responsible for the bioreduction process as well as the potential applications of biosynthesized nanoparticles in different fields. The challenges and limitations of this plant-mediated biosynthetic approach are also discussed.  相似文献   

13.
Commercial and research interest in nanotechnology has exploded in recent years, with nearly US$9 billion in investment from public and private sources in 2005. While the list of potential applications for nanotechnologies continues to grow, there is increasing pressure from governments and researchers alike to understand the implications of this new class of materials. The emerging field of green nano applies green chemistry and engineering principles to the synthesis of nanomaterials. Here we outline several strategies for the development of green nano and review past policy and research activities in understanding nanotechnology's environmental implications. By means of the green chemistry metric of E‐factor, an analysis is undertaken of the traditional syntheses of several specific nanomaterials, including carbon nanotubes, fullerenes, and metal nanoparticles. It was found that the E‐factors of these production processes vary over several orders of magnitude, making it difficult to comment generally about the resource use efficiencies of nanomaterials production. For gold nanoparticles specifically, E‐factors for six different production methods are found to range from 102 to 105, demonstrating that greener synthesis routes are possible and that environmental benefits can begin to be quantified. Expanding the analysis to include life‐cycle stages upstream and downstream of production and to incorporate environmental health effects is encouraged, though significant data gaps exist.  相似文献   

14.
Iron oxide nanoparticles have been explored recently for their beneficial applications in many biomedical areas, in environmental remediation, and in various industrial applications. However, potential risks have also been identified with the release of nanoparticles into the environment. To study the ecological effects of iron oxide nanoparticles on aquatic organisms, we used early life stages of the zebrafish (Danio rerio) to examine such effects on embryonic development in this species. The results showed that ≥10 mg/L of iron oxide nanoparticles instigated developmental toxicity in these embryos, causing mortality, hatching delay, and malformation. Moreover, an early life stage test using zebrafish embryos/larvae is also discussed and recommended in this study as an effective protocol for assessing the potential toxicity of nanoparticles. This study is one of the first on developmental toxicity in fish caused by iron oxide nanoparticles in aquatic environments. The results will contribute to the current understanding of the potential ecotoxicological effects of nanoparticles and support the sustainable development of nanotechnology.  相似文献   

15.
Nanotechnology is relevant to diverse fields of science and technology. Due to the many advantages over non-biological systems, several research groups have exploited the use of biological systems for the synthesis of nanoparticles. Among the different microbes used for the synthesis of nanoparticles, fungi are efficient candidates for fabrication of metal nanoparticles both intra- and extracellulary. The nanoparticles synthesized using fungi present good polydispersity, dimensions and stability. The potential applications of nanotechnology and nanoparticles in different fields have revolutionized the health care, textile and agricultural industries and they are reviewed here.  相似文献   

16.
Nanoparticle metal oxides represent a new class of important materials that are increasingly being developed for use in research and health-related applications. Highly ionic metal oxides are interesting not only for their wide variety of physical and chemical properties but also for their antibacterial activity. Although the in vitro antibacterial activity and efficacy of regular zinc oxides have been investigated, little is known about the antibacterial activity of nanoparticles of ZnO. Preliminary growth analysis data suggest that nanoparticles of ZnO have significantly higher antibacterial effects on Staphylococcus aureus than do five other metal oxide nanoparticles. In addition, studies have clearly demonstrated that ZnO nanoparticles have a wide range of antibacterial effects on a number of other microorganisms. The antibacterial activity of ZnO may be dependent on the size and the presence of normal visible light. The data suggest that ZnO nanoparticles have a potential application as a bacteriostatic agent in visible light and may have future applications in the development of derivative agents to control the spread and infection of a variety of bacterial strains.  相似文献   

17.
《Process Biochemistry》2007,42(5):919-923
The development of reliable processes for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Reports on the cell-associated biosynthesis of silver nanoparticles using microorganisms have been published, but these methods of synthesis are rather slow. In this paper, we report on the rapid synthesis of metallic nanoparticles of silver using the reduction of aqueous Ag+ ion using the culture supernatants of Klebsiella pneumonia, Escherichia coli, and Enterobacter cloacae (Enterobacteriacae). The synthetic process was quite fast and silver nanoparticles were formed within 5 min of silver ion coming in contact with the cell filtrate. Through a limited screening process involving a number of common microorganisms, we observed that the culture supernatants of different bacteria from Enterobacteriacae were potential candidates for the rapid synthesis of silver nanoparticles; further, we revealed that this method of synthesis requires far less time than previously published biological methods. Our investigation also showed that piperitone can partially inhibit the reduction of Ag+ to metallic silver nanoparticles by Enterobacteriacae.  相似文献   

18.
Nanotechnology is gaining enormous attention as the most dynamic research area in science and technology. It involves the synthesis and applications of nanomaterials in diverse fields including medical, agriculture, textiles, food technology, cosmetics, aerospace, electronics, etc. Silver nanoparticles (AgNPs) have been extensively used in such applications due to their excellent physicochemical, antibacterial, and biological properties. The use of plant extract as a biological reactor is one of the most promising solutions for the synthesis of AgNPs because this process overcomes the drawbacks of physical and chemical methods. This review article summarizes the plant-mediated synthesis process, the probable reaction mechanism, and the colorimetric sensing applications of AgNPs. Plant-mediated synthesis parameters largely affect the surface plasmon resonance (SPR) characteristic due to the changes in the size and shape of AgNPs. These changes in the size and shape of plant-mediated AgNPs are elaborately discussed here by analyzing the surface plasmon resonance characteristics. Furthermore, this article also highlights the promising applications of plant-mediated AgNPs in sensing applications regarding the detection of mercury, hydrogen peroxide, lead, and glucose. Finally, it describes the future perspective of plant-mediated AgNPs for the development of green chemistry.  相似文献   

19.
Nanotechnology is one of the most promising and decisive technologies in the world. Nanomaterials, as the primary research aspect of nanotechnology, are quite different from macroscopic materials because of their unique optical, electrical, magnetic, thermal properties, and more robust mechanical properties, which make them play an essential role in the field of materials science, biomedical field, aerospace field, and environmental energy. Different preparation methods for nanomaterials have various physical and chemical properties and are widely used in different areas. In this review, we focused on the preparation methods, including chemical, physical, and biological methods due to the properties of nanomaterials. We mainly clarified the characteristics, advantages, and disadvantages of different preparation methods. Then, we focused on the applications of nanomaterials in biomedicine, including biological detection, tumor diagnosis, and disease treatment, which provide a development trend and promising prospects for nanomaterials.  相似文献   

20.
The development of effective and environmentally friendly methods for the green synthesis of nanoparticles (NPs) is a critical stage in the field of nanotechnology. Silver nanoparticles (AgNPs) are significant due to their unique physical, chemical, and biological properties, as well as their numerous applications. Physical, chemical, and green synthesis approaches can all be used to produce AgNPs; however, synthesis using biological precursors, particularly plant-based green synthesis, has shown outstanding results. In recent years, owing to a combination of frequent droughts, unusual rainfall, salt-affected areas, and high temperatures, climate change has changed several ecosystems. Crop yields have decreased globally as a result of these changes in the environment. Green synthesized AgNPs role in boosting antioxidant defense mechanisms, methylglyoxal (MG) detoxification, and developing tolerance for abiotic stress-induced oxidative damage has been thoroughly described in plant species over the last decade. Although various studies on abiotic stress tolerance and metallic nanoparticles (NPs) in plants have been conducted, but the details of AgNPs mediated abiotic stress tolerance have not been well summarized. Therefore, the plant responses to abiotic stress need to be well understood and to apply the gained knowledge to increase stress tolerance by using AgNPs for crop plants. In this review, we outlined the green synthesis of AgNPs extracted from plant extract. We also have updates on the most important accomplishments through exogenous application of AgNPs to improve plant tolerance to drought, salinity, low and high-temperature stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号