首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
Interest in the development of bioprocesses for the production or extraction of bioactive compounds from natural sources has increased in recent years due to the potential applications of these compounds in food, chemical, and pharmaceutical industries. In this context, solid-state fermentation (SSF) has received great attention because this bioprocess has potential to successfully convert inexpensive agro-industrial residues, as well as plants, in a great variety of valuable compounds, including bioactive phenolic compounds. The aim of this review, after presenting general aspects about bioactive compounds and SSF systems, is to focus on the production and extraction of bioactive phenolic compounds from natural sources by SSF. The characteristics of SSF systems and variables that affect the product formation by this process, as well as the variety of substrates and microorganisms that can be used in SSF for the production of bioactive phenolic compounds are reviewed and discussed.  相似文献   

2.
The objectives of this study were to determine best conditions for the extraction of phenolic compounds from fresh, frozen and lyophilized basil leaves. The acetone mixtures with the highest addition of acetic acid extracted most of the phenolic compounds when fresh and freeze-dried material have been used. The three times procedure was more effective than once shaking procedure in most of the extracts obtained from fresh basil leaves – unlike the extracts derived from frozen material. Surprisingly, there were not any significant differences in the content of phenolics between the two used procedures in the case of lyophilized basil leaves used for extraction. Additionally, the positive correlation between the phenolic compounds content and antioxidant activity of the studied extracts has been noted. It is concluded that the acetone mixtures were more effective than the methanol ones for polyphenol extraction. The number of extraction steps in most of the cases was also a statistically significant factor affecting the yield of phenolic extraction as well as antioxidant potential of basil leaf extracts.  相似文献   

3.
Currently, prebiotics are all carbohydrates of relatively short chain length. One important group is the fructooligosaccharides (FOS), a special kind of prebiotic associated to the selective stimulation of the activity of certain groups of colonic bacteria. They have a positive and beneficial effect on intestinal microbiota, reducing the incidence of gastrointestinal infections and also possessing a recognized bifidogenic effect. Traditionally, these prebiotic compounds have been obtained through extraction processes from some plants, as well as through enzymatic hydrolysis of sucrose. However, different fermentative methods have also been proposed for the production of FOS, such as solid-state fermentations utilizing various agro-industrial by-products. By optimizing the culture parameters, FOS yields and productivity can be improved. The use of immobilized enzymes and cells has also been proposed as being an effective and economic method for large-scale production of FOS. This article is an overview of the results considering recent studies on FOS biosynthesis, physicochemical properties, sources, biotechnological production and applications.  相似文献   

4.
Various processes of extraction and quantitative analysis of a condensed tannin in a plant extract, which also includes some chlorogenic acids, have been examined. 60% methanol, at 50 degrees C, proved the most efficient extraction solvent. Several methods of analysis have been tried. The measure of the colour intensity obtained by the action of sulphuric vanilline on flavanols cannot be used because it depends on the tannin condensation stage. It is impossible to separate tannin from chlorogenic acids using the methods of adsorption by skin or nylon powders, or precipitation by polyvinylpyrrolidone. Only paper chromatography, followed by the distinct elution of the various phenolic compounds, allows the tannin evaluation by subtraction; but owing to the variability of the results, many more experiments are necessary. Some other processes are being studied.  相似文献   

5.
The objective of this work is to put forth the optimization and kinetics of total phenolic compounds extraction from Azadirachta indica leaves in a stirred batch extraction. Various experiential extraction parameters have been studied for maximum extraction of the total phenolic compounds. The maximum yield of total phenolic compounds was found to be 10.80?mg?g?1 of dried neem powder under the optimized conditions. The extraction kinetics behavior followed first-order kinetics with diffusion coefficient ranged from 1.8?×?10?12 to 3.2?×?10?12?m2 s?1 for all sets. Activation energy (Ea) value for the extraction of the total phenolic compounds was found to be 22.87?kJ?mol?1. The kinetic expression model developed by Spiro and Siddique showed a good agreement with the experimental outcomes. The obtained results can be used to scale up the operations for industrial purposes.  相似文献   

6.
For various reasons extraction of proteins from plant material is difficult. In particular phenolic compounds and polyanionic cell-wall mucilages render conventional procedures of extraction and purification much more difficult. In this respect, aqueous polymer two-phase systems are presented as a powerful technique in extraction of vanadate-dependent bromoperoxidases from the brown macroalga Laminaria digitata, a seaweed extremely rich in mucilages. Little bromoperoxidase activity was obtained when fresh thallus material was extracted in Tris buffer. Extraction from freeze-dried and powdered material was more efficient but only satisfactory when partitioning in an aqueous polymer two-phase system was employed. Among several two-phase systems tested, one composed of poly(ethylene glycol) (PEG 1550) and potassium carbonate proved most successful (phase system-1). A rapid and efficient extraction procedure was developed with special regard for suitability in large scale processes. Staining for catalytic activity after PAGE revealed a pattern of several bromoperoxidase isoforms. Bromoperoxidases extracted in phase system-1 were fractionated into two groups of isoforms by partitioning in a second system (phase system-2) indicating that isoforms from both groups differ significantly in surface properties. Subsequently, one purification step by hydrophobic interaction chromatography was sufficient to remove residual non-peroxidase proteins as well as remaining polysaccharides from bromoperoxidases of both groups. Thus, consideration of aqueous two-phase systems as a technique for extraction and purification of plant proteins can be recommended, whenever inconveniant amounts of phenolic compounds, mucilages or pigments are present.  相似文献   

7.
Subcritical water extraction was used to extract bioactive phenolic compounds from Vaccinium dunalianum Wight leaves. The optimal extraction conditions were determined as an extraction temperature of 150 °C, an extraction time of 40 min, and a liquid-solid ratio of 35 : 1 mL/g. The total phenolic content reached 21.35 mg gallic acid /g, which was 16 % higher than that by hot water extraction. The subcritical water extraction extract exhibited strong scavenging activity of DPPH free radical and ABTS+ free radical, as well as significant tyrosinase inhibitory activity. The study suggests that subcritical water extraction can alter the composition of the extracts, leading to the production of various phenolic compounds, effective antioxidants, and tyrosinase inhibitors from Vaccinium dulciana Wight leaves. These findings confirm the potential of Vaccinium dunalianum Wight as a natural antioxidant molecule source for the medicine and food industries, and for the therapy of skin pigmentation disorders.  相似文献   

8.
Phenolics are often produced as wastes by several industrial and agricultural activities. Many of these compounds and their derivatives are extremely dangerous to living organisms, because they are highly toxic and thus represent a serious environmental concern.

Conventional remediation methods of phenol-polluted systems have some disadvantages due to high cost, time-consuming procedures and formation of toxic residues. Conversely, the use of oxidative catalysts, both enzymatic or inorganic, is a promising alternative technology to address the clean up of such wastes. Oxidative enzymes and inorganic compounds, both naturally occurring in soil, behave as biotic and abiotic catalysts and support the transformation of phenolic compounds. The complete mineralization of phenolic pollutants as well as the formation of polymeric products, often less toxic than their precursors, may occur.

The present paper gives a brief review of many aspects concerning the properties of biotic and abiotic catalytic agents effective in the transformation of phenolic compounds. The main mechanisms of the processes as well as their feasibility for catalytic practical applications will be addressed. Examples of their potentiality in the detoxification of phenol-polluted systems will be provided, as well.  相似文献   

9.
Leaf exudates from individuals of 29 species included in Aloe Section Pachydendron have been separated by TLC and HPLC to reveal their phenolic components. All the zones are described by their chromatographic behaviour and UV absorption properties, but not all can be identified as known compounds so are distinguished by an arbitrary code. Section Pachydendron has been shown to be chemically heterogeneous akhough there are some correlations between species said to be taxonomically related. Without attaching taxonomic significance four chemical groupings can be discerned: (1) species in which chromones are prominent; (2) species in which andirone and anthraquinone glycosides are prominent; (3) species containing mainly purple-staining phenolic compounds; and (4) species with few leaf exudate phenolic compounds. This survey emphasizes the uncertain taxonomy of the Section and the need for more extensive collection and analysis.  相似文献   

10.
Summary Phenolic glycosides have been the subject of considerable interest in recent ecological and systematic studies, especially those involving the Salicaceae. But these compounds are markedly labile in aqueous media, and the consequences of spontaneous degradation for valid interpretation of results have been largely ignored by researchers. We found that freeze-drying and oven-drying of leaf samples from several Populus and Salix species produced dramatic changes in the total and relative concentrations of specific phenolic glycosides, when compared to analyses of fresh material. Extraction in aqueous and alcoholic media for extended (24 h) periods also effected changes in glycoside concentrations. Alterations in phenolic glycoside concentrations, interconversions among glycosides, and production of artifactual glycosides result from a series of hydrolytic reactions. These deleterious effects can be best (but not entirely) avoided by the use of fresh plant material, cold, nonaqueous extraction solvents, and short extraction times. Because individual phenolic glycosides exhibit very different biological activities against herbivores, we caution ecologists to use utmost care in the performance and interpretation of phenolic glycoside assays.  相似文献   

11.
A major concern regarding allelopathic interactions involving phenolic acids in no-till systems pertains to the fact that concentrations of individual phenolic acids recoverable from field soils are well below levels required for inhibition of germination and seedling growth in laboratory bioassays. Field soils contain a variety of phenolic acids as well as other toxic and nontoxic organic compounds that are available to interact with seeds and roots; whereas in laboratory bioassays, with few exceptions, single phenolic acids have been tested. Studies of mixtures of phenolic acids and other toxic (e.g., methionine) and nontoxic (e.g., glucose) organic compounds in laboratory bioassays indicate that the action of a single phenolic acid is not representative of the actions of such mixtures. Specifically, as the number of phenolic acids added to soil increased, concentrations of the individual phenolic acids required to bring about a growth inhibition declined. The addition of other organic compounds (e.g., glucose, methionine) to the soil also reduced the concentration of a phenolic acid (e.g., p-coumaric acid) required for growth inhibition. These results support the hypothesis that in the field mixtures of phenolic acids and other organic compounds can cause inhibitory effects even though the concentrations of individual compounds are well below their inhibitory levels.  相似文献   

12.
Phenolic compounds are a large class of plant secondary metabolites, showing a diversity of structures, from rather simple structures, e.g. phenolic acids, through polyphenols such as flavonoids, that comprise several groups, to polymeric compounds based on these different classes. Phenolic compounds are important for the quality of plant based foods: they are responsible for the colour of red fruits, juices and wines and substrates for enzymatic browning, and are also involved in flavour properties. In particular, astringency is ascribed to precipitation of salivary proteins by polyphenols, a mechanism possibly involved in defence against their anti-nutritional effects. Finally, phenolic compounds are considered to contribute to the health benefits associated to dietary consumption of fruits and vegetables. During food processing and storage, plant phenolics are converted to a variety of derived compounds. While methods to analyse lower molecular weight phenolic compounds are well developed, analysis of polymeric compounds remains a challenge. Indeed, strong interactions of polymeric phenolics with plant cell wall material limit their extraction. Besides, their polydispersity results in poor resolution and detection, especially of derived structures such as oxidation products. However, recent advances of the analytical techniques have allowed some progress in their structural characterisation. This review summarizes the current knowledge on methods to analyse polyphenols. It presents their reactions in foods and beverages and the resulting structures, and highlights some aspects related to their impact on colour, flavour and health properties, with examples taken mostly from wine research.  相似文献   

13.
莲藕组织总RNA的快速提取方法   总被引:12,自引:1,他引:12  
莲藕组织富含多糖、脂质、酚类等物质,用一般的方法较难提取高质量的RNA。在改进前人方法的基础上,建立了一种高效、简单的CTAB-LiCl提取法,能快速提取高质量的莲藕组织总RNA,并且产率高、完整性好、纯度高,能进一步满足RT-PCR等分子生物学实验的需要。此外,该方法也适用于其它富含多糖、脂质、酚类等物质的植物组织总RNA的提取。  相似文献   

14.
Previous studies on biological pretreatment of switchgrass by solid-state fermentation with Acidothermus cellulolyticus 11B have shown that inhibitory compounds prevent growth on untreated switchgrass. A. cellulolyticus was grown in liquid medium containing cellobiose with phenolic monomers added to determine if the phenolic compounds are one possible source of inhibition. Cinnamic acid derivatives (trans-p-coumaric, trans-ferulic, and hydrocinnamic acids), hydroxybenzoic acids (p-hydroxybenzoic, syringic, and vanillic acids), benzaldehydes (vanillin and p-hydroxybenzaldehyde), and condensed tannin monomers (catechin and epicatechin) were tested at levels up to 20 mM. All compounds exhibited a dose-response relationship and strongly inhibited growth at 20 mM. trans-p-Coumaric acid was found to be the strongest inhibitor of A. cellulolyticus growth, with a specific growth rate of 0.004 h(-1) at 1 mM (0.18 h(-1) without phenolic monomer). GC-MS and HPLC methods were used to confirm the presence of these phenolic compounds in switchgrass and measure the amounts extracted using different conditions. The amounts of phenolic compounds measured were found to be higher than the threshold for growth inhibition. Leaching with water at 55°C was inefficient at removing bound phenolics, whereas NaOH treatment improved efficiency. Phenolic compounds spiked into alkaline pretreated switchgrass were also found to inhibit growth of A. cellulolyticus in solid-state fermentation. However, addition of insoluble polyvinylpolypyrrolidone (PVPP) to switchgrass improved growth of A. cellulolyticus in liquid cultures, providing a possible approach for alleviating microbial inhibition due to phenolic compounds in lignocellulose.  相似文献   

15.
Rhodococcus sp. strain JVH1 was previously reported to use a number of compounds with aliphatic sulfide bridges as sulfur sources for growth. We have shown that although JVH1 does not use the three-ring thiophenic sulfur compound dibenzothiophene, this strain can use the two-ring compound benzothiophene as its sole sulfur source, resulting in growth of the culture and loss of benzothiophene. Addition of inorganic sulfate to the medium reduced the conversion of benzothiophene, indicating that benzothiophene metabolism is repressed by sulfate and that benzothiophene is therefore used specifically as a sulfur source. JVH1 also used all six isomers of methylbenzothiophene and two dimethylbenzothiophene isomers as sulfur sources for growth. Metabolites identified from benzothiophene and some methylbenzothiophenes were consistent with published pathways for benzothiophene biodesulfurization. Products retaining the sulfur atom were sulfones and sultines, the sultines being formed from phenolic sulfinates under acidic extraction conditions. With 2-methylbenzothiophene, the final desulfurized product was 2-methylbenzofuran, formed by dehydration of 3-(o-hydroxyphenyl) propanone under acidic extraction conditions and indicating an oxygenative desulfination reaction. With 3-methylbenzothiophene, the final desulfurized product was 2-isopropenylphenol, indicating a hydrolytic desulfination reaction. JVH1 is the first microorganism reported to use all six isomers of methylbenzothiophene, as well as some dimethylbenzothiophene isomers, as sole sulfur sources. JVH1 therefore possesses broader sulfur extraction abilities than previously reported, including not only sulfidic compounds but also some thiophenic species.  相似文献   

16.
Non-structural phenolic compounds perform a variety of functions in plants, including acting as antioxidants. We describe a microplate-adapted colorimetric total phenolics assay that utilizes Folin-Ciocalteu (F-C) reagent. The F-C assay relies on the transfer of electrons in alkaline medium from phenolic compounds to phosphomolybdic/phosphotungstic acid complexes, which are determined spectroscopically at 765 nm. Although the electron transfer reaction is not specific for phenolic compounds, the extraction procedure eliminates approximately 85% of ascorbic acid and other potentially interfering compounds. This assay is performed in microcentrifuge tubes and assessed in a 96-well plate reader. At least 64 samples can be processed in 1 d.  相似文献   

17.
Extensive research work has been done on allelochemicals that are primarily plant secondary metabolites; in this review, some pathways of biosynthesis that are produced by higher plants are discussed as well as plant defense and the potential of the control of pests, diseases, and weeds. Benzoxazinoids, glucosinolates, and some sesquiterpenoids and phenolic compounds are discussed in more detail. Five genes, Bx1 through Bx5, have been analyzed and shown to be required for a typical benzoxazinoid, DIMBOA biosynthesis in maize, and their functions were demonstrated in vitro. Among those alleochemicals mentioned here, some isothiocyanates hirsutin and ω methylsulfonylalkyl (n=8, 9, and 10) isothiocyanates, sesquiterpenoids rugosal A and lettucenin A, and phenolic compounds emodin, physcion, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, and oligostilbenes are emphasized from the viewpoint of plant defense.  相似文献   

18.
19.
In the modern era, the use of sustainable, environmentally friendly alternatives for removal of recalcitrant pollutants in streams resulting from industrial processes is of key importance. In this context, biodegradation of phenolic compounds, pharmaceuticals and dyes in wastewater by using oxidoreductases offers numerous benefits. Tremendous research efforts have been made to develop novel, hybrid strategies for simultaneous immobilization of oxidoreductase and removal of toxic compounds. The use of support materials with the options for combining enzyme immobilization with adsorption technology focused on phenolic pollutants and products of biocatalytic conversion seems to be of particular interest. Application of enzymatic reactors based on immobilized oxidoreductases for coupling enzyme-aided degradation and membrane separation also attract still growing attention. However, prior selection of the most suitable support/sorbent material and/or membrane as well as operational mode and immobilization technique is required in order to achieve high removal efficiency. Thus, in the framework of this review, we present an overview of the impact of support/sorbent material on the catalytic properties of immobilized enzymes and sorption of pollutants as well as parameters of membranes for effective bioconversion and separation. Finally, future perspectives of the use of processes combining enzyme immobilization and sorption technology as well as application of enzymatic reactors for removal of environmental pollutants are discussed.  相似文献   

20.
Abstract

Four organic solvents along with water were applied for the conventional extraction of Eucalyptus camaldulensis (Myrtaceae), phenolic contents and antioxidant activities were investigated through variable protocols and correlation coefficients were considered, the phenolic composition was also characterized by Gas chromatography-mass spectrometry (GC-MS). Using solvents with dissimilar polarities affected the phenolic yields extracted from E. camaldulensis and their related antioxidant activities varied significantly among the four investigated plant organs. The leaf extract of acetone 70% contained the highest amount of phenolic compounds (46.56?mg/g dry weight); while the bud-water boiled extract maintained the maximum value of tannins (45.68?mg/g dry weight). Correlation coefficients indicated that phenolic compounds were mostly accountable for the phosphomolybednum antioxidant potentials (0.520), followed by tannins (0.460). Also, both the reducing power activities and hydrogen peroxide scavenging of E. camaldulensis extracts positively correlated with tannins, but at different significance degrees. However, the GC-MS analysis revealed that most of the detected phenolic constituents were more abundant in the plant seed. So, the existence of some other compounds such as organic acids, along with phenolics, may have increased the antioxidant potentials of leaf and bud. Undeniably, the optimization of extraction conditions could stimulate the antioxidant capabilities of the plant extracts of E. camaldulensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号