共查询到20条相似文献,搜索用时 0 毫秒
1.
Cationic liposome-mediated gene delivery in vivo 总被引:4,自引:0,他引:4
Templeton NS 《Bioscience reports》2002,22(2):283-295
Several improvements have been made in liposomal delivery, thus making this technology potentially useful for treatment of certain diseases in the clinic. Success in non-viral delivery is complicated and requires optimization of several components. These components include nucleic acid purification, plasmid design, formulation of the delivery vehicle, administration route and schedule, dosing, detection of gene expression, and others. With further improvements, broad use of non-viral delivery systems to treat human disorders should be possible. 相似文献
2.
Magnetic nanoparticles for gene and drug delivery 总被引:1,自引:0,他引:1
Investigations of magnetic micro- and nanoparticles for targeted drug delivery began over 30 years ago. Since that time, major progress has been made in particle design and synthesis techniques, however, very few clinical trials have taken place. Here we review advances in magnetic nanoparticle design, in vitro and animal experiments with magnetic nanoparticle-based drug and gene delivery, and clinical trials of drug targeting. 相似文献
3.
4.
Chitosan is a widely available, mucoadhesive polymer that is able to increase cellular permeability and improve the bioavailability of orally administered protein drugs. It can also be readily formed into nanoparticles able to entrap drugs or condense plasmid DNA. Studies on the formulation and oral delivery of such chitosan nanoparticles have demonstrated their efficacy in enhancing drug uptake and promoting gene expression. This review summarizes some of these findings and highlights the potential of chitosan as a component of oral delivery systems. 相似文献
5.
pH-responsive nanoparticles (NPs) are currently under intense development as drug delivery systems for cancer therapy. Among various pH-responsiveness, NPs that are designed to target slightly acidic extracellular pH environment (pHe) of solid tumors provide a new paradigm of tumor targeted drug delivery. Compared to conventional specific surface targeting approaches, the pHe-targeting strategy is considered to be more general due to the common occurrence of acidic microenvironment in solid tumors. This review mainly focuses on the design and applications of pHe-activated NPs, with special emphasis on pHe-activated surface charge reversal NPs, for drug and siRNA delivery to tumors. The novel development of NPs described here offers great potential for achieving better therapeutic effects in cancer treatment. 相似文献
6.
基因治疗的效果严重依赖于基因载体。与传统包封技术相比,在自组装技术基础上发展起来的以DNA为聚阴离子,与荷正电的高分子材料在溶液中形成纳米粒的方法,已成为目前最重要的非病毒基因载体制备手段,具有良好的应用前景。采用层层自组装(layer-by-layer assembly,LbL)技术可提高基因装载率,其优势还在于纳米粒表面性质的可控性:在温和的条件下实现多种材料在载体表面的固定,实现载体多功能化等。本文将对近年来国内外有关层层自组装纳米粒作为非病毒基因载体的研究进展以及本课题组在此方向的研究进行简要综述。 相似文献
7.
Molecularly imprinted polymers for drug delivery 总被引:7,自引:0,他引:7
Alvarez-Lorenzo C Concheiro A 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2004,804(1):231-245
Molecular imprinting technology has an enormous potential for creating satisfactory drug dosage forms. Although its application in this field is just at an incipient stage, the use of MIPs in the design of new drug delivery systems (DDS) and devices useful in closely related fields, such as diagnostic sensors, is receiving increasing attention. Examples of MIP-based DDS can be found for the three main approaches developed to control the moment at which delivery should begin and/or the drug release rate, i.e. rate-programmed, activation-modulated, or feedback-regulated drug delivery. The utility of these systems for administering drugs by different routes (e.g. oral, ocular or transdermal) or trapping undesired substances under in vivo conditions is discussed. This review seeks to highlight the more remarkable advantages of the imprinting technique in the development of new efficient DDS as well as pointing out some possibilities to adapt the synthesis procedures to create systems compatible with both the relative instable drug molecules, especially of peptide nature, and the sensitive physiological tissues with which MIP-based DDS would enter into contact when administered. The prospects for future development are also analysed. 相似文献
8.
The coiled coil is a superhelical structural protein motif that has been thoroughly investigated in recent years. Because of the relatively well-understood principles that determine the properties of coiled coil peptides and proteins, macromolecular systems containing the coiled coil motif have been suggested for various applications. This short review focuses on hybrid polymer coiled coil systems designed for drug delivery purposes. After a short introduction, the most important features of the coiled coils (stability, association number, oligomerization selectivity and orientation of helices) are described, and the factors influencing these characteristics are discussed. Several examples of the most interesting biomedical applications of the polymer-coiled coil systems (according to the authors' opinion) are presented. 相似文献
9.
Baculovirus display strategies: Emerging tools for eukaryotic libraries and gene delivery. 总被引:3,自引:0,他引:3
Christian Oker-Blom Kari J Airenne Reingard Grabherr 《Briefings in Functional Genomics and Prot》2003,2(3):244-253
Recombinant baculoviruses have been extensively used as vectors for abundant expression of a large variety of foreign proteins in insect cell cultures. The appeal of the system lies essentially in easy cloning techniques and virus propagation combined with the eukaryotic post-translational modification machinery of the insect cell. Recently, a novel molecular biology tool was established by the development of baculovirus surface display, using different strategies for presentation of foreign peptides and proteins on the surface of budded virions. This eukaryotic display system enables presentation of large complex proteins on the surface of baculovirus particles and has thereby become a versatile system in molecular biology. Surface display strategies play an important role, as they may be used to enhance the efficiency and specificity of viral binding and entry to mammalian cells. In addition, baculovirus surface display vectors have been engineered to contain mammalian promoter elements designed for gene delivery both in vitro and in vivo. Moreover, baculovirus capsid display has recently been developed; this holds promise for intracellular targeting of the viral capsid and subsequent cytosolic delivery of desired protein moieties. Finally, the viruses can accommodate large insertions of foreign DNA and replicate only in insect cells. Together, these are attributes that are very likely to make them important tools in functional genomics and proteomics. 相似文献
10.
Fiona Wegman F. Cumhur Öner Wouter J.A. Dhert 《Biotechnology & genetic engineering reviews》2013,29(2):206-220
The possibilities of using gene therapy for bone regeneration have been extensively investigated. Improvements in the design of new transfection agents, combining vectors and delivery/release systems to diminish cytotoxicity and increase transfection efficiencies have led to several successful in vitro, ex vivo and in vivo strategies. These include growth factor or short interfering ribonucleic acid (siRNA) delivery, or even enzyme replacement therapies, and have led to increased osteogenic differentiation and bone formation in vivo. These results provide optimism to consider use in humans with some of these gene-delivery strategies in the near future. 相似文献
11.
细胞因子多数是由机体免疫细胞和某些非免疫细胞产生的,对细胞的生长、增殖、分化均有调节作用的一类具有生物活性的蛋白质。在肿瘤治疗中,细胞因子作为一种蛋白质药物,具有体内半衰期短、全身毒副作用大等特点,因而选择细胞因子递送策略时需考虑以上因素。文章简要介绍了几种常见的细胞因子,并综述了近年来在肿瘤治疗中细胞因子递送策略的研究进展。 相似文献
12.
Nanomaterials based on chitosan have emerged as promising carriers of therapeutic agents for drug delivery due to good biocompatibility, biodegradability, and low toxicity. Chitosan originated nanocarriers have been prepared by mini-emulsion, chemical or ionic gelation, coacervation/precipitation, and spray-drying methods. As alternatives to these traditional fabrication methods, self-assembled chitosan nanomaterials show significant advantages and have received growing scientific attention in recent years. Self-assembly is a spontaneous process by which organized structures with particular functions and properties could be obtained without additional complicated processing or modification steps. In this review, we focus on recent progress in the design, fabrication and physicochemical aspects of chitosan-based self-assembled nanomaterials. Their applications in drug delivery of different therapeutic agents are also discussed in details. 相似文献
13.
There is a current trend towards evaluation of molecular agents for treatment of a variety of ailments, including cancer. One class of such biomolecules is proteins, and their shortened versions, peptides. Use of peptidic entities has been hindered by poor bioavailability in vivo and the high cost involved in mass-producing these macromolecular drugs. The need for localized delivery is being met with the development of various biophysical means, which include devices and aids, mainly transdermal and invasive implants. In addition, various cell-based delivery modalities, which include the use of spore-forming bacteria and stem cells, are being explored. This review discusses these methods in turn, and examines ways by which these can be enhanced for peptide delivery to tumors. 相似文献
14.
《Molecular membrane biology》2013,30(7):364-381
AbstractRadiation-based therapies aided by nanoparticles have been developed for decades, and can be primarily categorized into two main platforms. First, delivery of payload of photo-reactive drugs (photosensitizers) using the conventional nanoparticles, and second, design and development of photo-triggerable nanoparticles (primarily liposomes) to attain light-assisted on-demand drug delivery. The main focus of this review is to provide an update of the history, current status and future applications of photo-triggerable lipid-based nanoparticles (light-sensitive liposomes). We will begin with a brief overview on the applications of liposomes for delivery of photosensitizers, including the choice of photosensitizers for photodynamic therapy, as well as the currently available light sources (lasers) used for these applications. The main segment of this review will encompass the details of strategies used to develop photo-triggerable liposomes for their drug delivery function. The principles underlying the assembly of photoreactive lipids into nanoparticles (liposomes) and photo-triggering mechanisms will be presented. We will also discuss factors that limit the applications of these liposomes for in vivo triggered drug delivery and emerging concepts that may lead to the biologically viable photo-activation strategies. We will conclude with our view point on the future perspectives of light-sensitive liposomes in the clinic. 相似文献
15.
16.
Rafael Ischakov Lihi Adler-Abramovich Ludmila Buzhansky Talia Shekhter Ehud Gazit 《Bioorganic & medicinal chemistry》2013,21(12):3517-3522
Peptide-based hydrogel nanoparticles represent a promising alternative to current drug delivery approaches. We have previously demonstrated that the Fmoc-FF aromatic dipeptide building block can self-assemble in aqueous solutions to form nano-scaled ordered hydrogels of remarkable mechanical rigidity. Here, we present a scalable process for the assembly of this peptide into hydrogel nanoparticles (HNPs) aimed to be utilized as potential drug delivery carriers. Fmoc-FF based HNPs were formulated via modified inverse-emulsion method using vitamin E-TPGS as an emulsion stabilizer and high speed homogenization. The formed HNPs exhibited two distinguishable populations with an average size of 21.5 ± 1.3 and 225.9 ± 0.8 nm. Gold nanoparticles were encapsulated within the hydrogel nanoparticles as contrast agents to monitor the formation of the assemblies and their ultrastructural properties. Next, we demonstrated a robust experimental procedure developed and optimized for the formulation, purification, storage and handling procedures of HNPs. Encapsulation of doxorubicin (Dox) and 5-flourouracil (5-Fu) within the HNPs matrix showed release kinetics of the drugs depending on their chemical structure, molecular weight and hydrophobicity. The results clearly indicate that Fmoc-FF based hydrogel nanoparticles have the potential to be used as encapsulation and delivery system of various drugs and bioactive molecules. 相似文献
17.
Beom Soo Kim In Duck Jung Jong Sik Kim Jung-heon Lee In Young Lee Kyung Bok Lee 《Biotechnology letters》2000,22(14):1127-1130
The use of curdlan, a natural -1,3-glucan, in protein drug delivery vehicles was studied by carrying out in vitro release studies with curdlan gels containing bovine serum albumin (BSA) as a model protein. Addition of urea (8 M) decreased the gel formation temperature to 37°C. Curdlan was hydroxyethylated in order to form gels under mild conditions such as physiological temperature and pH. In gels formed in 8 M urea solution, urea was almost released after 2 h while BSA was completely released after 45–100 h. The total time for complete release of BSA increased with curdlan concentration within gels. The strength of hydroxyethylated curdlan gels (385.7 dyne cm–2) was weaker than that of curdlan gels formed in 8 M urea solution (6277 dyne cm–2). 相似文献
18.
We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications. 相似文献
19.
Jia Wen Fengyu Liu Binbin Tao Shiguo Sun 《Bioorganic & medicinal chemistry letters》2019,29(8):1019-1022
Podophyllotoxin (PPT) is a chemotherapeutic agent which has shown significant anti-cancer effects through inhibiting microtubule assembly. However, because of the poor water solubility and obvious side effects, PPT cannot be used in clinical cancer therapy. In order to solve these problems, a novel glutathione-responsive PPT conjugate has been synthesized in which PPT was linked to an anti-mitotic cell penetrating peptide (PRA) via a disulfide linkage. In particular, the as-prepared PPT-PRA conjugate can self-assemble into vesicle in water, furthermore, another anti-cancer drug (doxorubicin was chosen as an example) can be loaded in the vesicle for synergistic drug delivery. For better cancer cells targeting, the vesicle was then modified with folic acid (FA). The results indicated that the as-prepared FA modified drug-loaded vesicle not only could overcome the poor water solubility and side effects of PPT but also exhibited targeted toxicity and synergistic therapeutic effect. 相似文献
20.
Aerosol gene therapy 总被引:9,自引:0,他引:9
Gene therapy is a novel field of medicine that holds tremendous therapeutic potential for a variety of human diseases. Targeting
of therapeutic gene delivery vectors to the lungs can be beneficial for treatment of various pulmonary diseases such as lung
cancer, cystic fibrosis, pulmonary hypertension, alpha-1 antitrypsin deficiency, and asthma. Inhalation therapy using formulations
delivered as aerosols targets the lungs through the pulmonary airways. The instant access and the high ratio of the drug deposited
within the lungs noninvasively are the major advantages of aerosol delivery over other routes of administration. Delivery
of gene formulations via aerosols is a relatively new field, which is less than a decade old. However, in this short period
of time significant developments in aerosol delivery systems and vectors have resulted in major advances toward potential
applications for various pulmonary diseases. This article will review these advances and the potential future applications
of aerosol gene therapy technology. 相似文献