首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The temperature dependence of charge recombination from the P+QA- and from the P+QB- states produced by a flash was studied in reaction centers isolated from the photosynthetic thermophilic bacterium Chloroflexus aurantiacus. P designates the primary electron donor; QA and QB the primary and secondary quinone electron acceptors respectively. In QB-depleted reaction centers the rate constant (kAP) for P+QA- recombination was temperature independent between 0-50 degrees C (17.6 +/- 0.7 s-1 at pH 8 and pH 10). The same value was obtained in intact membranes in the presence of o-phenanthroline. Upon lowering the temperature from 250 K to 160 K, kAP increased by a factor of two and remained constant down to 80 K. The overall temperature dependence of kAP was consistent with an activationless process. Ubiquinone (UQ-3) and different types of menaquinone were used for QB reconstitution. In UQ-3 reconstituted reaction centers charge recombination was monoexponential (rate constant k = 0.18 +/- 0.03 s-1) and temperature independent between 5-40 degrees C. In contrast, in menaquinone-3- and menaquinone-4-reconstituted reaction centers P+ rereduction following a flash was markedly biphasic and temperature dependent. In menaquinone-6-reconstituted reaction centers a minor contribution from a third kinetic phase corresponding to P+QA- charge recombination was detected. Analysis of these kinetics and of the effects of the inhibitor o-phenanthroline at high temperature suggest that in detergent suspensions of menaquinone-reconstituted reaction centers a redox reaction removing electrons from the quinone acceptor complex competes with charge recombination. Instability of the semiquinone anions is more pronounced when QB is a short-chain menaquinone. From the temperature dependence of P+ decay the activation parameters for the P+QB- recombination and for the competing side oxidation of the reduced menaquinone acceptor have been derived. For both reactions the activation enthalpies and entropies change markedly with menaquinone chain length but counterbalance each other, resulting in activation free energies at ambient temperature independent of the menaquinone tail. When reaction centers are incorporated into phospholipid vesicles containing menaquinone-8 a temperature-dependent, monophasic, o-phenanthroline-sensitive recombination from the P+QB- state is observed, which is consistent with the formation of stable semiquinone anions. This result seems to indicate a proper QB functioning in the two-subunit reaction center isolated from Chlorflexus aurantiacus when the complex is inserted into a lipid bilayer.  相似文献   

2.
In this study, we investigated the role of menaquinone biosynthesis genes in selenate reduction by Enterobacter cloacae SLD1a-1 and Escherichia coli K12. A mini-Tn5 transposon mutant of E. cloacae SLD1a-1, designated as 4E6, was isolated that had lost the ability to reduce Se(VI) to Se(0). Genetic analysis of mutant strain 4E6 showed that the transposon was inserted within a menD gene among a menFDHBCE gene cluster that encodes for proteins required for menaquinone biosynthesis. A group of E. coli K12 strains with single mutations in the menF , menD , menC and menE genes were tested for loss of selenate reduction activity. The results showed that E. coli K12 carrying a deletion of either the menD , menC or menE gene was unable to reduce selenate. Complementation using wild-type sequences of the E.  cloacae SLD1a-1 menFDHBCE sequence successfully restored the selenate reduction activity in mutant strain 4E6, and E. coli K12 menD and menE mutants. Selenate reduction activity in 4E6 was also restored by chemical complementation using the menaquinone precursor compound 1,4-dihydroxy-2-nathphoic acid. The results of this work suggest that menaquinones are an important source of electrons for the selenate reductase, and are required for selenate reduction activity in E. cloacae SLD1a-1 and E. coli K12.  相似文献   

3.
Two Tn5-generated mutants of Shewanella putrefaciens with insertions in menD and menB were isolated and analyzed. Both mutants were deficient in the use of several terminal electron acceptors, including Fe(III). This deficiency was overcome by the addition of menaquinone (vitamin K(2)). Isolated membrane fractions from both mutants were unable to reduce Fe(III) in the absence of added menaquinone when formate was used as the electron donor. These results indicate that menaquinones are essential components for the reduction of Fe(III) by both whole cells and purified membrane fractions when formate or lactate is used as the electron donor.  相似文献   

4.
Hydrogenase and fumarate reductase isolated from Wolinella succinogenes were incorporated into liposomes containing menaquinone. The two enzymes were found to be oriented solely to the outside of the resulting proteoliposomes. The proteoliposomes catalyzed fumarate reduction by H2 which generated an electrical proton potential (Delta(psi) = 0.19 V, negative inside) in the same direction as that generated by fumarate respiration in cells of W. succinogenes. The H+/e ratio brought about by fumarate reduction with H2 in proteoliposomes in the presence of valinomycin and external K+ was approximately 1. The same Delta(psi) and H+/e ratio was associated with the reduction of 2,3-dimethyl-1,4-naphthoquinone (DMN) by H2 in proteoliposomes containing menaquinone and hydrogenase with or without fumarate reductase. Proteoliposomes containing menaquinone and fumarate reductase with or without hydrogenase catalyzed fumarate reduction by DMNH2 which did not generate a Delta(psi). Incorporation of formate dehydrogenase together with fumarate reductase and menaquinone resulted in proteoliposomes catalyzing the reduction of fumarate or DMN by formate. Both reactions generated a Delta(psi) of 0.13 V (negative inside). The H+/e ratio of formate oxidation by menaquinone or DMN was close to 1. The results demonstrate for the first time that coupled fumarate respiration can be restored in liposomes using the well characterized electron transport enzymes isolated from W. succinogenes. The results support the view that Delta(psi) generation is coupled to menaquinone reduction by H2 or formate, but not to menaquinol oxidation by fumarate. Delta(psi) generation is probably caused by proton uptake from the cytoplasmic side of the membrane during menaquinone reduction, and by the coupled release of protons from H2 or formate oxidation on the periplasmic side. This mechanism is supported by the properties of two hydrogenase mutants of W. succinogenes which indicate that the site of quinone reduction is close to the cytoplasmic surface of the membrane.  相似文献   

5.
In many microorganisms, menaquinone is an essential lipid-soluble electron carrier. Recently, an alternative menaquinone biosynthetic pathway was found in some microorganisms [Hiratsuka, T., Furihata, K., Ishikawa, J., Yamashita, H., Itoh, N., Seto, H., Dairi, T., 2008. An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 321, 1670–1673]. Here, we report the 1.55 Å crystal structure of MqnD (TTHA1568) from Thermus thermophilus HB8, an enzyme within the alternative menaquinone biosynthetic pathway. The structure comprises two domains with α/β structures, a large domain and a small domain. L(+)-Tartaric acid was bound to the pocket between the two domains, suggesting that this pocket is a putative active site. The conserved glycine residues at positions 78, 80 and 82 seem to act as hinges, allowing the substrate to access the pocket. Highly conserved residues, such as Asp14, Asp38, Asn43, Ser57, Thr107, Ile144, His145, Glu146, Leu176 and Tyr234, are located at this pocket, suggesting that these residues are involved in substrate binding and/or catalysis, and especially, His145 could function as a catalytic base. Since humans and their commensal intestinal bacteria, including lactobacilli, lack the alternative menaquinone biosynthetic pathway, this enzyme in pathogenic species, such as Helicobacter pylori and Campylobacter jejuni, is an attractive target for the development of chemotherapeutics. This high-resolution structure may contribute toward the development of its inhibitors.  相似文献   

6.
Menaquinone (vitamin K(2)) is an essential component of the electron transfer chain in many pathogens, including Mycobacterium tuberculosis and Staphylococcus aureus, and menaquinone biosynthesis is a potential target for antibiotic drug discovery. We report herein a series of mechanism-based inhibitors of MenE, an acyl-CoA synthetase that catalyzes adenylation and thioesterification of o-succinylbenzoic acid (OSB) during menaquinone biosynthesis. The most potent compound inhibits MenE with an IC(50) value of 5.7microM.  相似文献   

7.
In contrast to other fat-soluble vitamins, dietary vitamin K is rapidly lost to the body resulting in comparatively low tissue stores. Deficiency is kept at bay by the ubiquity of vitamin K in the diet, synthesis by gut microflora in some species, and relatively low vitamin K cofactor requirements for γ-glutamyl carboxylation. However, as shown by fatal neonatal bleeding in mice that lack vitamin K epoxide reductase (VKOR), the low requirements are dependent on the ability of animals to regenerate vitamin K from its epoxide metabolite via the vitamin K cycle. The identification of the genes encoding VKOR and its paralog VKOR-like 1 (VKORL1) has accelerated understanding of the enzymology of this salvage pathway. In parallel, a novel human enzyme that participates in the cellular conversion of phylloquinone to menaquinone (MK)-4 was identified as UbiA prenyltransferase-containing domain 1 (UBIAD1). Recent studies suggest that side-chain cleavage of oral phylloquinone occurs in the intestine, and that menadione is a circulating precursor of tissue MK-4. The mechanisms and functions of vitamin K recycling and MK-4 synthesis have dominated advances made in vitamin K biochemistry over the last five years and, after a brief overview of general metabolism, are the main focuses of this review.  相似文献   

8.
Ramchandra P  Sturm AW 《Anaerobe》2010,16(6):610-613
Mycobacterium tuberculosis has been classified for decades as a strict aerobic species. Whole genome sequencing of the type culture strain H37Rv has revealed the presence of a full set of genes allowing for anaerobic metabolism. Naphthoate synthase (menB) is a key enzyme required for the synthesis of menaquinone, which plays a crucial role in anaerobic electron transport, ultimately resulting in the formation of energy generating intermediates. Interrupting the synthesis of this enzyme will interfere with the production of menaquinone and therefore this enzyme is a potential drug target. This study serves to investigate the role of naphtoate synthase in the survival of M. tuberculosis H37Rv when incubated under oxygen limiting conditions of unagitated liquid culture over 15 weeks. M.?tuberculosis H37Rv was grown in Middlebrook 7H9 media. The tubes were kept undisturbed at 37?°C for up to 15 weeks. At selected time points, aliquots of cells were removed and frozen. RNA was simultaneously extracted from all aliquots. The RNA was converted to cDNA for Real-Time PCR on the ABI 7000 SDS. Gene expression was normalized against 16S RNA quantities at each time point. A systematic increase in the expression of the menB gene product was observed over the incubation period with a 4.3-fold increase seen at week 6 (P?相似文献   

9.
P T Lee  A Y Hsu  H T Ha    C F Clarke 《Journal of bacteriology》1997,179(5):1748-1754
Strains of Escherichia coli with mutations in the ubiE gene are not able to catalyze the carbon methylation reaction in the biosynthesis of ubiquinone (coenzyme Q) and menaquinone (vitamin K2), essential isoprenoid quinone components of the respiratory electron transport chain. This gene has been mapped to 86 min on the chromosome, a region where the nucleic acid sequence has recently been determined. To identify the ubiE gene, we evaluated the amino acid sequences encoded by open reading frames located in this region for the presence of sequence motifs common to a wide variety of S-adenosyl-L-methionine-dependent methyltransferases. One open reading frame in this region (o251) was found to encode these motifs, and several lines of evidence that confirm the identity of the o251 product as UbiE are presented. The transformation of a strain harboring the ubiE401 mutation with o251 on an expression plasmid restored both the growth of this strain on succinate and its ability to synthesize both ubiquinone and menaquinone. Disruption of o251 in a wild-type parental strain produced a mutant with defects in growth on succinate and in both ubiquinone and menaquinone synthesis. DNA sequence analysis of the ubiE401 allele identified a missense mutation resulting in the amino acid substitution of Asp for Gly142. E. coli strains containing either the disruption or the point mutation in ubiE accumulated 2-octaprenyl-6-methoxy-1,4-benzoquinone and demethylmenaquinone as predominant intermediates. A search of the gene databases identified ubiE homologs in Saccharomyces cerevisiae, Caenorhabditis elegans, Leishmania donovani, Lactococcus lactis, and Bacillus subtilis. In B. subtilis the ubiE homolog is likely to be required for menaquinone biosynthesis and is located within the gerC gene cluster, known to be involved in spore germination and normal vegetative growth. The data presented identify the E. coli UbiE polypeptide and provide evidence that it is required for the C methylation reactions in both ubiquinone and menaquinone biosynthesis.  相似文献   

10.
1. Corynebacterium diphtheriae contains relatively large amounts (6.6mumoles/g. dry wt.) of a naphthaquinone whose ultraviolet-absorption spectrum is that of a typical menaquinone (vitamin K(2)), the E(1%) (1 cm.) value corresponding with that of MK-8, but on reversed-phase paper chromatograms it runs with MK-9. 2. In the presence of Adams catalyst hydrogen uptake is 2 atoms/mol. less than that calculated for MK-8. 3. Hydrogenated samples of the Corynebacterium quinone and the hydrogenation product of authentic MK-8 ran together on reversed-phase chromatograms. 4. Infrared-absorption spectra indicated close relationship with the menaquinone series, and nuclear-magnetic-resonance measurements show that one, non-terminal, double bond of the side chain has been saturated. 5. The compound is thus designated MK-8(2H), indicating a menaquinone with eight isoprene units but only seven double bonds in the side chain.  相似文献   

11.
Matsson M  Tolstoy D  Aasa R  Hederstedt L 《Biochemistry》2000,39(29):8617-8624
Succinate:quinone reductases are membrane-bound enzymes that catalyze electron transfer from succinate to quinone. Some enzymes in vivo reduce ubiquinone (exergonic reaction) whereas others reduce menaquinone (endergonic reaction). The succinate:menaquinone reductases all contain two heme groups in the membrane anchor of the enzyme: a proximal heme (heme b(P)) located close to the negative side of the membrane and a distal heme (heme b(D)) located close to the positive side of the membrane. Heme b(D) is a distinctive feature of the succinate:menaquinone reductases, but the role of this heme in electron transfer to quinone has not previously been analyzed. His28 and His113 are the axial ligands to heme b(D) in Bacillus subtilis succinate:menaquinone reductase. We have individually replaced these His residues with Leu and Met, respectively, resulting in assembled membrane-bound enzymes. The H28L mutant enzyme lacks succinate:quinone reductase activity probably due to a defective quinone binding site. The H113M mutant enzyme contains heme b(D) with raised midpoint potential and is impaired in electron transfer to menaquinone. Our combined experimental data show that the heme b(D) center, into which we include a quinone binding site, is crucial for succinate:menaquinone reductase activity. The results support a model in which menaquinone is reduced on the positive side of the membrane and the transmembrane electrochemical potential provides driving force for electron transfer from succinate via heme b(P) and heme b(D) to menaquinone.  相似文献   

12.
In Escherichia coli, isochorismate is a common precursor for the biosynthesis of the siderophore enterobactin and menaquinone (vitamin K2). Isochorismate is formed by the shikimate pathway from chorismate by the enzyme isochorismate synthase encoded by the entC gene. Since enterobactin is involved in the aerobic assimilation of iron, and menaquinone is involved in anaerobic electron transport, we investigated the regulation of entC by iron and oxygen. An operon fusion between entC with its associated regulatory region and lacZ+ was constructed and introduced into the chromosome in a single copy. Expression of entC-lacZ was found to be regulated by the concentration of iron both aerobically and anaerobically. An established entC::kan mutant deficient in enterobactin biosynthesis was found to grow normally and synthesize wild-type levels of menaquinone under anaerobic conditions in iron-sufficient media. These results led to the demonstration of an alternate isochorismate synthase specifically involved in menaquinone synthesis encoded by the menF gene. Consistent with these findings, the entC+ strains were found to synthesize enterobactin anaerobically under iron-deficient conditions while the ent mutants failed to do so.  相似文献   

13.
The majority of bacterial membrane-bound NiFe-hydrogenases and formate dehydrogenases have homologous membrane-integral cytochrome b subunits. The prototypic NiFe-hydrogenase of Wolinella succinogenes (HydABC complex) catalyzes H2 oxidation by menaquinone during anaerobic respiration and contains a membrane-integral cytochrome b subunit (HydC) that carries the menaquinone reduction site. Using the crystal structure of the homologous FdnI subunit of Escherichia coli formate dehydrogenase-N as a model, the HydC protein was modified to examine residues thought to be involved in menaquinone binding. Variant HydABC complexes were produced in W. succinogenes, and several conserved HydC residues were identified that are essential for growth with H2 as electron donor and for quinone reduction by H2. Modification of HydC with a C-terminal Strep-tag II enabled one-step purification of the HydABC complex by Strep-Tactin affinity chromatography. The tagged HydC, separated from HydAB by isoelectric focusing, was shown to contain 1.9 mol of heme b/mol of HydC demonstrating that HydC ligates both heme b groups. The four histidine residues predicted as axial heme b ligands were individually replaced by alanine in Strep-tagged HydC. Replacement of either histidine ligand of the heme b group proximal to HydAB led to HydABC preparations that contained only one heme b group. This remaining heme b could be completely reduced by quinone supporting the view that the menaquinone reduction site is located near the distal heme b group. The results indicate that both heme b groups are involved in electron transport and that the architecture of the menaquinone reduction site near the cytoplasmic side of the membrane is similar to that proposed for E. coli FdnI.  相似文献   

14.
Accumulation of aminoglycoside antibiotics by bacteria requires energy, and it appears that this must be derived from electron transport occurring within the cytoplasmic membrane. Dependence of aminoglycoside accumulation on cellular menaquinone content was examined using a menaquinone auxotroph of bacillus subtilis. This dependence manifested itself only when the menaquinone concentration was decreased to less than 10% of normal. The restricted aminoglycoside accumulation observed under these conditions was closely correlated with susceptibility to growth inhibition by the antibiotics. Evidence of saturation of the accumulation system was observed at low menaquinone concentrations, an effect not seen when menaquinone deficiency was relieved by supplying adequate shikimic acid (a menaquinone precursor) to the auxotroph. Lipophilic quinones may play two roles in aminoglycoside accumulation by bacteria: (i) as a binding site or part of a carrier complex: and (ii) as a crucial component of the electron transport system in maintaining the proton electrochemical gradient.  相似文献   

15.
The committed step in menaquinone biosynthesis is the formation of o-succinylbenzoate (OSB). It is presumed to require the reaction of a seven-carbon intermediate of the shikimate pathway with a succinic semialdehyde-thiamin pyrophosphate (TPP) anion, derived by decarboxylation of 2-ketoglutarate. The following evidence indicates that the decarboxylation is not a function of the ketoglutarate dehydrogenase complex but is carried out by a separate activity. (A) Cell-free extracts of Escherichia coli K12 without added TPP lose OSB synthase activity but retain all of the ketoglutarate dehydrogenase complex activities. (B) OSB synthase activity is inhibited by addition of tetrahydro-TPP (th-TPP) to the incubations. The ketoglutarate dehydrogenase complex activities are only inhibited by this analogue after an initial preincubation period. (C) The high molecular weight ketoglutarate dehydrogenase complex can be separated from OSB synthase activity by gel-permeation chromatography on Sepharose CL-6B. Experiment series A and B also provide supporting evidence that TPP does play an important role in menaquinone biosynthesis.  相似文献   

16.
Map locations and functions of Salmonella typhimurium men genes   总被引:3,自引:1,他引:2       下载免费PDF全文
Menaquinone (men) mutants of Salmonella typhimurium isolated on the basis of their inability to produce trimethylamine were characterized with respect to mutation site, the ability to cross-feed each other and be cross-fed by known Escherichia coli men mutants, and response to intermediates of the menaquinone biosynthetic pathway. Cross-feeding tests were based on the requirement of menaquinone for hydrogen sulfide production. Genotypes corresponding to the menA, B, C, D, and possibly E genes described in E. coli were all identified. Additional studies of deletions in the menBCD area revealed that this cluster lies between ack/pta and glpT, as in E. coli. The ack and pta mutants were also defective in the production of trimethylamine and failed to produce gas in the absence of added formate.  相似文献   

17.
Reaction centers were purified from the thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. The reaction center consists of four polypeptides L, M, H and C, whose apparent molecular masses were determined to be 25, 30, 34 and 44 kDa, respectively, by polyacrylamide gel electrophoresis. The heaviest peptide corresponds to tightly bound cytochrome. The tightly bound cytochrome c contains two types of heme, high-potential c-556 and low-potential c-553. The low-potential heme is able to be photooxidized at 77 K. The reaction center exhibits laser-flash-induced absorption changes and circular dichroism spectra similar to those observed in other purple photosynthetic bacteria. Whole cells contain both ubiquinone and menaquinone. Reaction centers contain only a single active quinone; chemical analysis showed this to be menaquinone. Reaction center complexes without the tightly bound cytochrome were also prepared. The near-infrared pigment absorption bands are red-shifted in reaction centers with cytochrome compared to those without cytochrome.  相似文献   

18.
19.
The biosynthesis of o-succinylbenzoic acid (OSB), the first aromatic intermediate involved in the biosynthesis of menaquinone (vitamin K2) is demonstrated for the first time in the gram-positive bacterium Bacillus subtilis. Cell extracts were found to contain isochorismate synthase, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) synthase-alpha-ketoglutarate decarboxylase and o-succinylbenzoic acid synthase activities. An odhA mutant which lacks the decarboxylase component (usually termed E1, EC 1.2.4.2, oxoglutarate dehydrogenase [lipoamide]) of the alpha-ketoglutarate dehydrogenase complex was found to synthesize SHCHC and form succinic semialdehyde-thiamine pyrophosphate. Thus, the presence of an alternate alpha-ketoglutarate decarboxylase activity specifically involved in menaquinone biosynthesis is established for B. subtilis. A number of OSB-requiring mutants were also assayed for the presence of the various enzymes involved in the biosynthesis of OSB. All mutants were found to lack only the SHCHC synthase activity.  相似文献   

20.
The DosR regulon in Mycobacterium tuberculosis is involved in respiration-limiting conditions, its induction is controlled by two histidine kinases, DosS and DosT, and recent experimental evidence indicates DosS senses either molecular oxygen or a redox change. Under aerobic conditions, induction of the DosR regulon by DosS, but not DosT, was observed after the addition of ascorbate, a powerful cytochrome c reductant, demonstrating that DosS responds to a redox signal even in the presence of high oxygen tension. During hypoxic conditions, regulon induction was attenuated by treatment with compounds that occluded electron flow into the menaquinone pool or decreased the size of the menaquinone pool itself. Increased regulon expression during hypoxia was observed when exogenous menaquinone was added, demonstrating that the menaquinone pool is a limiting factor in regulon induction. Taken together, these data demonstrate that a reduced menaquinone pool directly or indirectly triggers induction of the DosR regulon via DosS. Biochemical analysis of menaquinones upon entry into hypoxic/anaerobic conditions demonstrated the disappearance of the unsaturated species and low-level maintenance of the mono-saturated menaquinone. Relative to the unsaturated form, an analog of the saturated form is better able to induce signaling via DosS and rescue inhibition of menaquinone synthesis and is less toxic. The menaquinone pool is central to the electron transport system (ETS) and therefore provides a mechanistic link between the respiratory state of the bacilli and DosS signaling. Although this report demonstrates that DosS responds to a reduced ETS, it does not rule out a role for oxygen in silencing signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号