首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure.  相似文献   

2.
量子点是一种具有独特性质的纳米材料,近年来被广泛应用于传感领域。对高毒性胆碱酯酶抑制剂类化合物进行灵敏检测一直是传感领域的一个研究热点。我们就偶联标记型和非标记型两种传感策略,对量子点生物传感体系用于胆碱酯酶抑制剂检测的研究工作进行了综述。  相似文献   

3.
The use of luminescent colloidal quantum dots in biological investigations has increased dramatically over the past several years due to their unique size-dependent optical properties and recent advances in biofunctionalization. In this review, we describe the methods for generating high-quality nanocrystals and report on current and potential uses of these versatile materials. Numerous examples are provided in several key areas including cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. We also explore toxicity issues surrounding these materials and speculate about the future uses of quantum dots in a clinical setting.  相似文献   

4.
In recent decades, fast advancements in the fields of metal-organic frameworks (MOFs) are providing unprecedented opportunities for the development of novel functional MOFs for various biosensing applications. Exciting progress is achieved due to the combination of MOFs with various functional components, which introduces novel structures and new features to the MOFs-based biosensing applications, such as higher stability, higher sensitivity, higher flexibility, and higher specificity. This review aims to be a comprehensive summary of the most recent advances in the development of functional MOFs for various biosensing applications, placing special attention on important contributions in recent 3 years. In this review, the most recent developments in design and synthesis of functional MOFs for biosensing applications are summarized. MOFs-based biosensing applications are outlined according to the central roles of MOFs in biosensors, which include carriers of sensitive elements, enzyme-mimic elements, electrochemical signaling, optical signaling, and gas sensing. Finally, the current challenges and future development trends of functional MOFs for biosensing applications are proposed and discussed.  相似文献   

5.
The use of nanoparticles in stem cell research is relatively recent, although very significant in the last 5 years with the publication of about 400 papers. The recent advances in the preparation of some nanomaterials, growing awareness of material science and tissue engineering researchers regarding the potential of stem cells for regenerative medicine, and advances in stem cell biology have contributed towards the boost of this research field in the last few years. Most of the research has been focused in the development of new nanoparticles for stem cell imaging; however, these nanoparticles have several potential applications such as intracellular drug carriers to control stem cell differentiation and biosensors to monitor in real time the intracellular levels of relevant biomolecules/enzymes. This review examines recent advances in the use of nanoparticles for stem cell tracking, differentiation and biosensing. We further discuss their utility and the potential concerns regarding their cytotoxicity. J. Cell. Biochem. 108: 746–752, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The structural and functional information encoded in the base sequence of nucleic acids provides a means to organize hybrid protein-DNA nanostructures with pre-designed, programmed functionality. This review discusses the activation of enzyme cascades in supramolecular DNA-protein hybrid structures, the bioelectrocatalytic activation of redox enzymes on DNA scaffolds, and the programmed positioning of enzymes on 1D, 2D and 3D DNA nanostructures. These systems provide starting points towards the design of interconnected enzyme networks. Substantial progress in the tailoring of functional protein-DNA nanostructures has been accomplished in recent years, and advances in this field warrant a comprehensive discussion. The application of these systems for the control of biocatalytic transformations, for amplified biosensing, and for the synthesis of metallic nanostructures are addressed, and future prospects for these systems are highlighted.  相似文献   

7.
8.
A new and exciting biosensing avenue based on assessment of the non-monotonous, concentration dependent effect of pore formation is discussed. A novel kinetic model is advanced to relate surface plasmon resonance (SPR) data with actual concentrations of interacting partners. Lipid modified L1 sensor chip provide the accessible platform for SPR exploration of peptide–membrane interaction, with POPC and melittin as model systems. We show that quantitative assessment of the interaction between an antimicrobial peptide and lipid modified sensors is capable to provide both sensing avenues and detailed mechanistic insights into effects of pore-forming compounds. The proposed model combined with appropriate design of the experimental protocol adds a new depth to the classic SPR investigation of peptide–lipid interaction offering a quantitative platform for detection, improved understanding of the manifold facets of the interaction and for supporting the controlled design of novel antimicrobial compounds. This biosensing approach can be applied to an entire set of pore-forming compounds including antimicrobial peptides and exo-toxins.  相似文献   

9.
Due to their capacity to immobilize more bioreceptor parts at reduced volumes, nanomaterials have emerged as potential tools for increasing the sensitivity to specific molecules. Furthermore, carbon nanotubes, gold nanoparticles, polymer nanoparticles, semiconductor quantum dots, nanodiamonds, and graphene are among the nanomaterials that are under investigation. Due to the fast development of this field of research, this review summarizes the classification of biosensors using the main receptors and design of biosensors. Numerous studies have concentrated on the manipulation of persistent luminescence nanoparticles (PLNPs) in biosensing, cell tracking, bioimaging, and cancer therapy due to the effective removal of autofluorescence interference from tissues and the ultra-long near-infrared afterglow emission. As luminescence has a unique optical property, it can be detected without constant external illumination, preventing autofluorescence and light dispersion through tissues. These successes have sparked an increasing interest in creating novel PLNP types with the desired superior properties and multiple applications. In this review, we emphasize the most recent developments in biosensing, imaging, and image-guided therapy whilst summarizing the research on synthesis methods, bioapplications, biomembrane modification, and the biosafety of PLNPs. Finally, the remaining issues and difficulties are examined together with prospective future developments in the biomedical application field.  相似文献   

10.
The driving advent of portable, integrated biosensing ways for pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques. The miniaturization and automation of integrated detection systems present a significant advantage for rapid, portable detection of foodborne microbes. In this review, we have highlighted current developments and directions in foodborne pathogen detection systems. Recent progress in the biosensor protocols toward the detection of specific microbes has been elaborated in detail. It also includes strategies and challenges for the implementation of a portable platform toward rapid foodborne sensing systems.  相似文献   

11.
An immune cellular biosensing system has been constructed to assess immunomodulating effects of chemicals. Production of nitric oxide in the immune cellular biosensing system was used as readout of an immune cellular response for assessing the immunomodulating effects of chemicals. The macrophage-like cell line RAW264.7, which has signaling pathways of inducible nitric oxide synthase, was employed in the cellular biosensing system. The immune cellular biosensing system consisted of a Pt counter electrode, an Ag/AgCl reference electrode, and a gold electrode onto which a polyion complex layer was coated to allow adherence of the RAW264.7 cells. As the results of evaluating effects of a polyion complex layer on cell viabilities by using WST-8 assay, the polyion complex layer did not affect RAW264.7 cells. The polyion-coated gold electrode could measure NO without the drawback of electrochemical interference that occurs with differential pulse voltammetry. The detection limit of the immune cellular biosensing system was 4.2 nM released NO as measured by double potential step chronoamperometry. The potent immune activating abilities of lipopolysaccharide and interferon-gamma could be assessed by the cellular biosensing system; NO release from cells was detected within 600 ms.  相似文献   

12.
Fluorescent nanoparticles (FNPs) have been widely used in chemistry and medicine for decades, but their employment in biology is relatively recent. Past reviews on FNPs have focused on chemical, physical or medical uses, making the extrapolation to biological applications difficult. In biology, FNPs have largely been used for biosensing and molecular tracking. However, concerns over toxicity in early types of FNPs, such as cadmium-containing quantum dots (QDs), may have prevented wide adoption. Recent developments, especially in non-Cd-containing FNPs, have alleviated toxicity problems, facilitating the use of FNPs for addressing ecological, physiological and molecule-level processes in biological research. Standardised protocols from synthesis to application and interdisciplinary approaches are critical for establishing FNPs in the biologists’ tool kit. Here, we present an introduction to FNPs, summarise their use in biological applications, and discuss technical issues such as data reliability and biocompatibility. We assess whether biological research can benefit from FNPs and suggest ways in which FNPs can be applied to answer questions in biology. We conclude that FNPs have a great potential for studying various biological processes, especially tracking, sensing and imaging in physiology and ecology.  相似文献   

13.
Single nanopores have attracted interest for their use as biosensing devices. In general, methods involve measuring ionic current blockades associated with translocation of analytes through the nanopore, but the detection of such short time lasting events requires complex equipment and setup that are critical for convenient routine biosensing. Here we present a novel biosensing concept based on a single nanopore in a silicon nitride membrane and two anchor-linked DNA species that forms trans-pore hybrids, realizing a stable blockade of ionic current through the pore. Molecular recognition events affecting the DNA hybrids cause a pore opening and the consequent establishment of an ionic current. In the present implementation of the device, we constructed a magnetic bead/streptavidin/biotin-DNA1/DNA2-biotin/streptavidin/Quantumdot-cluster complex (where DNA1 is a mismatched reverse complement of DNA2) through a sub-micrometric pore and monitored DNA strand displacement events occurring after addition of an oligonucleotide complementary to DNA2. The electric and mechanical aspects of the novel device, as well as its potential in biosensing are discussed.  相似文献   

14.
Plasmonics - Surface plasmon resonance (SPR) for biosensing was demonstrated 30 years ago. In the present contribution, its general background is described together with the necessary...  相似文献   

15.
Biosensors are by definition a combination of a biological receptor compound and a physical or physicochemical transducer. Therefore, the transducing structure is a critical part of every biosensor. In the development of new and improved biosensing layers the importance of the transducing structure is not restricted to the substrate to which biological structures have to be coupled. A field of even greater importance is the use of transducers as probes providing information on the structure and function of biosensing layers, and their relation to a transducer surface.

The aim of this paper is to give an overview on optical transducer principles and optical (surface) analytical techniques relevant as part of biosensing structures as well as probes in the development and optimisation of biosensing layers. Categories discussed are basic optical effects, materials involved, surface chemistry, the principal and technological limits of spatial resolution, and sensitivity. The intimate relation between the spatial resolution of a probe, the resulting size of interaction areas, and the feasibility of array structures is pointed out.

Two interferometric methods are presented in principle, and their application to biosensing and some results are discussed in detail. The necessity to characterise receptor layers to get detailed information about the interaction process is pointed out. The close relationship between optimal characterisation of layers by selection of adequate probe technologies and improvement of probe performance, and the development of new biosensing layers is discussed. Finally an outlook is given for future aspects of improved spatial resolution and multianalyte detection.  相似文献   


16.
Tethered bilayer lipid membranes are stable and promising model systems that mimic several properties of biological membranes. They provide an electrically insulating platform for the incorporation and study of functional membrane proteins, especially ion channels. Covalently linked to a solid support, they also offer enhanced stability compared with other model architectures. If the support can be used as an electrode, electrical characterisation of the system is possible and biosensing applications can be envisioned.Here, we will review some tethered bilayer structures developed in the past and show some examples of functional protein incorporation, both on oxide and gold substrates.  相似文献   

17.
Micro- and nanofabrication techniques have revolutionized the pharmaceutical and medical fields as they offer the possibility for highly reproducible mass-fabrication of systems with complex geometries and functionalities, including novel drug delivery systems and bionsensors. The principal micro- and nanofabrication techniques are described, including photolithography, soft lithography, film deposition, etching, bonding, molecular self assembly, electrically induced nanopatterning, rapid prototyping, and electron, X-ray, colloidal monolayer, and focused ion beam lithography. Application of these techniques for the fabrication of drug delivery and biosensing systems including injectable, implantable, transdermal, and mucoadhesive devices is described.  相似文献   

18.
BODIPY is an important fluorophores due to its enhanced photophysical and chemical properties including outstanding thermal/photochemical stability, intense absorption/emission profiles, high photoluminescence quantum yield, and small Stokes' shifts. In addition to BODIPY, indole and its derivatives have recently gained attention because of their structural properties and particularly biological importance, therefore these molecules have been widely used in sensing and biosensing applications. Here, we focus on recent studies that reported the incorporation of indole‐based BODIPY molecules as reporter molecules in sensing systems. We highlight the rationale for developing such systems and evaluate detection limits of the developed sensing platforms. Furthermore, we also review the application of indole‐based BODIPY molecules in bioimaging studies. This article includes the evaluation of indole‐based BODIPYs from synthesis to characterization and a comparison of the advantages and disadvantages of developed reporter systems, making it instructive for researchers in various disciplines for the design and development of similar systems.  相似文献   

19.
《Chirality》2017,29(5):159-166
Here we review our three recently developed analytical models describing the intraband optical activity of semiconductor nanocrystals, which is induced by screw dislocations, ionic impurities, or irregularities of the nanocrystal surface. The models predict that semiconductor nanocrystals can exhibit strong optical activity upon intraband transitions and have large dissymmetry of magnetic‐dipole absorption. The developed models can be used to interpret experimental circular dichroism spectra of nanocrystals and to advance the existing techniques of enantioseparation, biosensing, and chiral chemistry.  相似文献   

20.
Developments in the past few years have illustrated the potentially revolutionizing impact of nanomaterials, especially in biomedical imaging, drug delivery, biosensing and the design of functional nanocomposites. Methods to effectively interface proteins with nanomaterials for realizing these applications continue to evolve. Proteins are being used to control both the synthesis and assembly of nanomaterials. There has also been an increasing interest in understanding the influence of nanomaterials on the structure and function of proteins. Understanding and controlling the protein-nanomaterial interface will be crucial for designing functional protein-nanomaterial conjugates and assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号