首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interfacial activation via surfactant (Tween 80, Triton X‐100) treatment was conducted to improve the esterification activity of Rhizopus oryzae lipase that had undergone immobilization through cross‐linked enzyme aggregates (CLEA®) technique. Surfactant pretreated immobilized enzymes exhibited better esterification activity compared to free and non‐pretreated immobilized enzyme (Control CLEAs) since higher conversion rates were obtained within shorter times. The superiority of surfactant pretreated CLEAs, especially Tween 80 pretreated CLEAs (T 80 PT CLEAs), were clearly pronounced when longer alcohols were used as substrates. Conversion values exceeded 90% for octyl octanoate, oleyl octanoate and oleyl oleate synthesis with T 80 PT CLEAs whereas Control CLEAs and free enzyme showed no activity. Maximum conversions were achieved in the case equal molars of the substrates or in the case excess of the alcohol to acid in cyclohexane. In solvent free medium containing equal molars of substrates the conversion rates were 85% and 87% with T 80 PT CLEAs respectively for octyl octanoate and oleyl oleate within 2 hours. T 80 PT CLEAs showed 59% of its original activity after 7 consecutive usage for oleyl oleate synthesis. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:899–904, 2016  相似文献   

2.
The broad applicability of the cross-linking of enzyme aggregates to the effective immobilisation of enzymes is demonstrated and the influence of many parameters on the properties of the resulting CLEAs is determined. The relative simplicity of the operation ideally lends itself to high-throughput methodologies. The aggregation method was improved up to 100% activity yield for any enzyme. For the first time, the physical structures of CLEAs are elucidated.  相似文献   

3.
Abstract

The present study focusses on the enhancement of the catalytic activity and stability of an acetylesterase enzyme isolated from Staphylococcus spp. as Cross-Linked Enzyme Aggregates (CLEAs). The various parameters governing the activity of CLEAs were optimized. The magnetite and graphene oxide nanoparticles were successfully prepared via the chemical co-precipitation and Hummer's method, respectively. These nanoparticles supported the preparation as magnetite nanoparticle-supported cross-Linked Enzyme Aggregates (MGNP-CLEAs) and graphene oxide-supported Cross-Linked Enzyme Aggregates (GO-CLEAs). The activity and stability of these immobilized CLEAs were compared with the free enzyme at various temperature, pH, and organic solvents along with its storage stability and reusability. The immobilized preparations were analyzed by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared spectroscopy (FT-IR) techniques. Acetylesterase precipitated with 60% saturated ammonium sulfate salt (SAS) solution and cross-linked with 100?mM glutaraldehyde for 4?h at 30?°C was found to be optimal to produce CLEAs with highest activity recovery of 99.8%. The optimal pH at 8.0 and temperature at 30?°C remained the same for both the free and immobilized enzyme, respectively. Storage stability significantly improved for the immobilized enzyme as compared to free enzyme. SEM showed type-I aggregate and FT-IR revealed the successful immobilization of the enzyme. MGNP-CLEAs were found to have better activity and stability in comparison to other immobilized preparations.  相似文献   

4.
Over the last few decades many attempts have been made to use biocatalysts for the biotransformation of emerging contaminants in environmental matrices. Laccase, a multicopper oxidoreductase enzyme, has shown great potential in oxidizing a large number of phenolic and non-phenolic emerging contaminants. However, laccases and more broadly enzymes in their free form are biocatalysts whose applications in solution have many drawbacks rendering them currently unsuitable for large scale use. To circumvent these limitations, the enzyme can be immobilized onto carriers or entrapped within capsules; these two immobilization techniques have the disadvantage of generating a large mass of non-catalytic product. Insolubilization of the free enzymes as cross-linked enzymes (CLEAs) is found to yield a greater volume ratio of biocatalyst while improving the characteristics of the biocatalyst. Ultimately, novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater. In this review, fundamental features of laccases are provided in order to elucidate their catalytic mechanism, followed by different chemical aspects of the immobilization and insolubilization techniques applicable to laccases. Finally, kinetic and reactor design effects for enzymes in relation with the potential applications of laccases as combi-CLEAs and EPESs for the biotransformation of micropollutants in wastewater treatment are discussed.  相似文献   

5.
A mild and reproducible method has been developed for the surface-immobilization of enzymes on glutaraldehyde crosslinked gelatin beads. In this method glutaraldehyde is used in a dual capacity, as crosslinking agent and as the enzyme coupling agent. Glucoamylase (exo-α-1,4-d-glucosidase, EC 3.2.1.3), β-d-fructofuranosidase (invertase, EC 3.2.1.26) and β-d-glucoside (cellobiase, β-d-glucoside glucohydrolase, EC 3.2.1.21) have been successfully immobilized by this method, on the surface of the crosslinked gelatin particles. The method can be combined with the existing technology for the production of gelatin-entrapped enzymes. Thus, dual immobilized enzyme conjugates of glucoamylase and invertase have been prepared using this method, by entrapment of one enzyme in, and surface-binding of the other to, the gelatin matrix. The coupling of glucoamylase onto cross-linked gelatin particles by precipitation with poly(hexamethylenebiguanide hydrochloride) was also tested.  相似文献   

6.
We have developed a novel methodology that allowed the preparation of cross-linked enzyme aggregates (CLEAs) of glutaryl acylase (GAC) by co-aggregation of the enzyme with an aminated polymer: polyethyleneimine (PEI). The preparation of CLEAs of GAC from Pseudomonas sp. is not possible when using poly(ethylene glycol) and glutaraldehyde directly as precipitating and cross-linking agent, respectively. This problem arises probably from the low content of surface Lys groups of GAC which prevents an efficient cross-linking of the enzyme molecules in the aggregate. This fact was proven by the release of enzyme molecules from the aggregate and the solubilization of the enzyme when eliminating the precipitating agent. Our new co-aggregation system favors the cross-linking between the very reactive and abundant primary amino groups of the PEI and the primary amino groups on the enzyme surface. The use of PEI prevents the release of enzyme molecules from the aggregate. By this methodology, we prepared a very stable immobilized derivative of GAC. After optimization of the glutaraldehyde treatment conditions, the stability of the enzyme was significantly improved. It kept more than 60% of its initial activity after 72 h of incubation at 45 degrees C, whereas the soluble enzyme was fully inactivated in 2.5 h of incubation in the same conditions. Therefore, we have a new protocol for carrying out the preparation of cross-linked aggregates of enzymes with a low number of lysines on its surface.  相似文献   

7.
Cross-linked tyrosinase aggregates were prepared by precipitating the enzyme with ammonium sulfate and subsequent cross-linking with glutaraldehyde. Both activity and stability of these cross-linked enzyme aggregates (CLEAs) in aqueous solution, organic solvents, and ionic liquids have been investigated. Immobilization effectively improved the stability of the enzyme in aqueous solution against various deactivating conditions such as pH, temperature, denaturants, inhibitors, and organic solvents. The stability of the CLEAs in various organic solvents such as tert-butanol (t(1/2)=326.7h at 40°C) was significantly enhanced relative to that in aqueous solution (t(1/2)=5.5h). The effect of thermodynamic water activity (a(w)) on the CLEA activity in organic media was examined, demonstrating that the enzyme incorporated into CLEAs required an extensive hydration (with an a(w) approaching 1.0) for optimizing its activity. The impact of ionic liquids on the CLEA activity in aqueous solution was also assessed.  相似文献   

8.
Wang M  Qi W  Jia C  Ren Y  Su R  He Z 《Journal of biotechnology》2011,156(1):30-38
The precipitation of enzyme causes the major activity loss in the conventional protocol for CLEAs preparation. Herein, a sugar-assisted strategy was developed to minimize the activity loss in the step of enzyme precipitation by adding sugar as the stabilizer, which contributed to improve the activity yield of resulting CLEAs. Penicillin G acylase (PGA) was employed as a model enzyme. The effects of glucose, sucrose and trehalose on the activity yields of CLEAs were investigated. The highest activity was obtained in the case of adding trehalose. Confocal laser scanning microscopy and Fourier transform infrared spectroscopy showed that the polar microenvironment and the secondary structure of native enzyme were preserved to some extent when PGA was prepared as sugar-assisted CLEAs, resulting in PGA's higher activity than sugar-free CLEAs. Scanning electron microscope revealed the different inner morphologies, and the kinetic studies showed the higher affinity and resist-inhibition capacity of sugar-assisted CLEAs. Furthermore, stability experiments demonstrated that CLEAs prepared in sugar-assisted strategy remained higher thermal stability when it was incubated at high temperature.  相似文献   

9.
Cross-linked enzyme aggregates (CLEAs) have many economic and environmental benefits in the context of industrial biocatalysis. They are easily prepared from crude enzyme extracts, and the costs of (often expensive) carriers are circumvented. They generally exhibit improved storage and operational stability towards denaturation by heat, organic solvents, and autoproteolysis and are stable towards leaching in aqueous media. Furthermore, they have high catalyst productivities (kilograms product per kilogram biocatalyst) and are easy to recover and recycle. Yet another advantage derives from the possibility to co-immobilize two or more enzymes to provide CLEAs that are capable of catalyzing multiple biotransformations, independently or in sequence as catalytic cascade processes.  相似文献   

10.
The enzymatic conversion of lignocellulosic biomass into biofuels has been identified as an excellent strategy to generate clean energy. However, the current process is cost-intensive as an effective immobilization approach to reuse the enzyme(s) has been a major challenge. The present study introduces the concept and application of novel magnetic cross-linked enzyme aggregates (mag-CLEAs). Both mag-CLEAs and calcium-mag-CLEAs (Ca-mag-CLEAs) exhibited a 1.35 fold higher xylanase activity compared to the free enzyme and retained more than 80.0% and 90.0% activity, respectively, after 136 h of incubation at 50 °C, compared to 50% activity retained by CLEAs. A 7.4 and 9.0 fold higher sugar release from lime-pretreated and NH4OH pre-treated sugar bagasse, respectively, was achieved with Ca-mag-CLEAs compared to the free enzymes. The present study promotes the successful application of mag-CLEAs and Ca-mag-CLEAs as carrier free immobilized enzymes for the effective hydrolysis of lignocellulolytic biomass and associated biofuel feedstocks.  相似文献   

11.
The key to obtaining optimum performance of an enzyme is often a question of devising an effective method for its immobilization. This review describes a novel, versatile and effective methodology for enzyme immobilization, namely, as cross-linked enzyme aggregates (CLEAs). The method is exquisitely simple - involving precipitation of the enzyme from aqueous buffer followed by cross-linking of the resulting physical aggregates of enzyme molecules - and amenable to rapid optimization. It is applicable to a wide variety of enzymes, including cofactor-dependent oxidoreductases and lyases, and affords stable, recyclable catalysts with high retention of activity, sometimes higher than that of the free enzyme it was derived from. The enzyme does not need to be of high purity. Indeed, the methodology is essentially a combination of purification and immobilization in one step. The technique is also applicable to the preparation of combi-CLEAs, containing two or more enzymes, for use in one-pot, multi-step syntheses. For example, an oxynitrilase/nitrilase combi-CLEA was used for the one-pot synthesis of (S)-mandelic acid from benzaldehyde, in high yield and enantiomeric purity.  相似文献   

12.
The key to obtaining optimum performance of an enzyme is often a question of devising an effective method for its immobilization. This review describes a novel, versatile and effective methodology for enzyme immobilization, namely, as cross-linked enzyme aggregates (CLEAs). The method is exquisitely simple – involving precipitation of the enzyme from aqueous buffer followed by cross-linking of the resulting physical aggregates of enzyme molecules – and amenable to rapid optimization. It is applicable to a wide variety of enzymes, including cofactor-dependent oxidoreductases and lyases, and affords stable, recyclable catalysts with high retention of activity, sometimes higher than that of the free enzyme it was derived from. The enzyme does not need to be of high purity. Indeed, the methodology is essentially a combination of purification and immobilization in one step. The technique is also applicable to the preparation of combi-CLEAs, containing two or more enzymes, for use in one-pot, multi-step syntheses. For example, an oxynitrilase/nitrilase combi-CLEA was used for the one-pot synthesis of (S)-mandelic acid from benzaldehyde, in high yield and enantiomeric purity.  相似文献   

13.
Lipase from Rhizopus oryzae (ROL) was immobilized as crosslinked enzyme aggregate (CLEA) via precipitation with ammonium sulfate and simultaneous crosslinking with glutaraldehyde. The optimum conditions of the immobilization process were determined. Lipase CLEAs showed a twofold increase in activity when Tween 80‐pretreated lipase was used for CLEA preparation. CLEAs were shown to have several advantages compared to free lipase. CLEAs were more stable at 50°C and 60°C as well as for a wide range of pH. After incubation at 50°C, CLEA showed 74% of initial activity whereas free enzyme was totally inactivated. Reduction of Schiff bases has been performed for the first time in the CLEA preparation process significantly improving the chemically modified CLEAs' reusability, thus providing an enzyme with high potential for recycling even under aqueous reaction conditions where enzyme leakage is, in general, one of the major problems. The CLEA retained 91% activity after 10 cycles in aqueous medium. The immobilized enzyme was used for kinetic resolution reactions. Results showed that immobilization had an enhancing effect on the conversion (c) as well as on the enantiomeric ratio (E). ROL CLEA displayed five times higher enantioselectivity for the hydrolysis of (R,S)‐1‐phenylethyl acetate and likewise 1.5 times higher enantioselectivity for the transesterification of racemic (RS)‐1‐phenylethanol with vinylacetate. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 937–945, 2012 This article was published online on June 26, 2012. An edit was subsequently requested. This notice is included in the online and print versions to indicate that both have been corrected [27 June 2012].  相似文献   

14.
韩笑奇  白姝  史清洪 《生物工程学报》2016,32(12):1676-1684
以葡萄糖氧化酶(GOx)为研究对象,系统地研究了钙离子对交联酶聚集体(CLEA)粒子尺寸和微观结构的调控作用以及酶催化性能和实用性的影响。研究结果表明,GOx酶沉淀过程中引入钙离子可显著降低CLEA粒子尺寸并导致粒子内纳米孔道结构逐步消失。在0.1 mmol/L钙离子浓度下,GOx酶的CLEA仍保有清晰的纳米孔道结构。以葡萄糖为底物的GOx酶CLEA催化结果显示,该CLEA粒子的酶活性为对照CLEA粒子的2.69倍。即便1.0 mmol/L钙离子浓度下制备的CLEA粒子的GOx酶活性仍高出对照CLEA粒子约42%。此外,0.1 mmol/L钙离子浓度下制备的CLEA不仅具有更高的底物转化速率和很好的操作稳定性,而且CLEA中GOx酶的最大反应速度显著提高。这些实验结果明确了钙离子对CLEA粒子尺寸和微观结构的调控作用,为制备具有高效生物催化活性的CLEA粒子奠定了基础。  相似文献   

15.
A range of cross-linked enzyme aggregates (CLEAs) was prepared from commercially available aminoacylase I. Results from three test reactions showed that aminoacylase does not possess aminolysis or alcoholysis activity, both previously ascribed to this enzyme. This result was confirmed using aminoacylase purified by chromatographic techniques, which leads us to conclude that the previously observed acylations of esters and amines is due to other enzymes present as impurities in the crude aminoacylase I.  相似文献   

16.
The utilization of gene technology and of new production technologies have made industrial enzymes with improved properties or better cost performance available. This has in turn opened important new areas of enzyme applications. The benefits to the customers are considerable: cost savings in the application process, improved product quality, and in most cases also a significantly reduced impact on the environment.

Gene technology offers several benefits to the enzyme industry. This technology enables the use of safe, well-documented host organisms easy to cultivate, the microbial production of enzymes of animal and plant origin, the realization of enhanced efficiency and high product purity, and also the production of enzymes with improved stability and activity.

Developments in production technology include advanced control methods, the use of expert systems, and the application of large-scale crystallization.

As case stories the development of a lipase and of a cellulase is described. The effect on environment of enzyme application and production is discussed.  相似文献   


17.
随着生物制药的迅速发展,许多酶类药物应运而生,在治疗代谢疾病、心血管疾病、癌症等诸多疾病上发挥着越来越重要的作用。但是酶类药物也存在一些不足,如潜在的免疫原性、较短的体内半衰期,以及较差的组织靶向性,影响了酶类药物的疗效和应用。为克服这些缺点,人们已开发出多种技术,如通过糖基化、聚乙二醇修饰等分子工程技术提升酶蛋白药效,另一方面酶基因疗法也已成功用于多种酶缺陷疾病的治疗。基于酶类药物的迅速发展和广泛的应用前景,本文对酶类药物的现状进行较详细的阐述,并对酶类药物的优势、所存在的问题及未来发展趋势进行分析和评述。  相似文献   

18.
Cross-linked enzyme aggregates (CLEAs) are considered as an effective tool for the immobilization of enzyme. The ionic cross-linking agent-sodium tripolyphosphate (TPP) was first used in preparing CLEAs. Aspergillus niger lipase was precipitated with ammonium sulfate and further cross-linked by TPP. The factors including enzyme concentration, pH of cross-linking medium, TPP dosage and cross-linking time were optimized. Maximum recovery activity (99.5 ± 0.634 %) and cross-linking yield (88.4 ± 0.46 %) can be obtained under the optimal process conditions, which can illustrate TPP had little effect on enzyme activity. CLEAs showed improved activity over broad pH and temperature range compared to the free enzyme. The thermal stability was obviously improved compared to free enzyme under the optimal temperature (40℃) and the half-life was 7.5-fold higher than that of free enzyme. Moreover, scanning electron microscopy (SEM) revealed that CLEAs had a cavity with porous structure and the particle size was 249 ± 3.98 nm. X-ray diffraction (XRD) showed the crystallinity of the CLEAs decreased. The changes in secondary structures of CLEAs revealed the increment in conformational rigidity. Such results suggested that the CLEAs has ideal application prospects.  相似文献   

19.
Seven commercially available microbial lipases were immobilised as their cross-linked enzyme aggregates (CLEAs). Preparations with enhanced activity were obtained by a judicious choice of the precipitant [(NH4)2SO4, 1,2-dimethoxyethane or acetone] and by adding either a crown ether or surfactant, depending on the source of the enzyme. Thus, precipitation of the lipases from Thermomyces lanuginosus and Rhizomucor miehei with (NH4)2SO4 in the presence of SDS, followed by cross-linking with glutaraldehyde, afforded CLEAs with three and two times, respectively, the hydrolytic activity of the native enzymes. Preparations with up to ten times enhanced activity in organic medium were similarly prepared.  相似文献   

20.
工业催化用酶已经成为现代生物制造技术的核心"芯片"。不断设计和研发新型高效的酶催化剂是发展工业生物技术的关键。工业催化剂创新设计的科学基础是对酶与底物的相互作用、结构与功能关系及其调控机制的深入剖析。随着生物信息学和智能计算技术的发展,可以通过计算的方法解析酶的催化反应机理,进而对其结构的特定区域进行理性重构,实现酶催化性能的定向设计与改造,促进其工业应用。聚焦工业酶结构-功能关系解析的计算模拟和理性设计,已成为工业酶高效创制改造不可或缺的关键技术。本文就各种计算方法和设计策略以及未来发展趋势进行简要介绍和讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号