首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effective peptidomimetics should posses structural rigidity and appropriate interaction pattern leading to potential spatial and electronic matching to the target receptor site. Rational design of such small bioactive molecules could push chemical synthesis and molecular modeling toward faster progress in medicinal chemistry. Conformational properties of N‐t‐butoxycarbonyl‐glycine‐(E/Z)‐dehydrophenylalanine N′,N′‐dimethylamides (Boc‐Gly‐(E/Z)‐ΔPhe‐NMe2) in chloroform were studied by NMR and IR spectroscopy. The experimental findings were supported by extensive calculations at DFT(B3LYP, M06‐2X) and MP2 levels of theory and the β‐turn tendency for both isomers of the studied dipeptide were determined in vacuum and in solution. The theoretical data and experimental IR results were used as an additional information for the NMR‐based determination of the detailed solution conformations of the peptides. The obtained results reveal that N‐methylation of C‐terminal amide group changes dramatically the conformational properties of studied dehydropeptides. Theoretical conformational analysis reveals that the tendency to adopt β‐turn conformations is much weaker for the N‐methylated Z isomer (Boc‐Gly‐(Z)‐ΔPhe‐NMe2), both in vacuum and in polar environment. On the contrary, N‐methylated E isomer (Boc‐Gly‐(E)‐ΔPhe‐NMe2) can easily adopt β‐turn conformation, but the backbone torsion angles (φ1, ψ1, φ2, ψ2) are off the limits for common β‐turn types. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 28–40, 2014.  相似文献   

2.
Large superfamilies of enzymes derived from a common progenitor have emerged by duplication and divergence of genes encoding metabolic enzymes. Division of the functions of early generalist enzymes enhanced catalytic power and control over metabolic fluxes. Later, novel enzymes evolved from inefficient secondary activities in specialized enzymes. Enzymes operate in the context of complex metabolic and regulatory networks. The potential for evolution of a new enzyme depends upon the collection of enzymes in a microbe, the topology of the metabolic network, the environmental conditions, and the net effect of trade-offs between the original and novel activities of the enzyme.  相似文献   

3.
4.
5.
Strategy of the development of model for enzyme reactor at laboratory scale with respect to the modelling of kinetics is presented. The recent literature on the mathematic modelling on enzyme reaction rate is emphasized.  相似文献   

6.
7.
《Trends in biotechnology》2023,41(6):760-768
Many synthetic biology applications rely on programming living cells using gene circuits – the assembly and wiring of genetic elements to control cellular behaviors. Extensive progress has been made in constructing gene circuits with diverse functions and applications. For many circuit functions, however, it remains challenging to ensure that the circuits operate in a predictable manner. Although the notion of predictability may appear intuitive, close inspection suggests that it is not always clear what constitutes predictability. We dissect this concept and how it can be confounded by the complexity of a circuit, the complexity of the context, and the interplay between the two. We discuss circuit engineering strategies, in both computation and experiment, that have been used to improve the predictability of gene circuits.  相似文献   

8.
9.
Rational engineering of enzyme stability   总被引:11,自引:0,他引:11  
During the past 15 years there has been a continuous flow of reports describing proteins stabilized by the introduction of mutations. These reports span a period from pioneering rational design work on small enzymes such as T4 lysozyme and barnase to protein design, and directed evolution. Concomitantly, the purification and characterization of naturally occurring hyperstable proteins has added to our understanding of protein stability. Along the way, many strategies for rational protein stabilization have been proposed, some of which (e.g. entropic stabilization by introduction of prolines or disulfide bridges) have reasonable success rates. On the other hand, comparative studies and efforts in directed evolution have revealed that there are many mutational strategies that lead to high stability, some of which are not easy to define and rationalize. Recent developments in the field include increasing awareness of the importance of the protein surface for stability, as well as the notion that normally a very limited number of mutations can yield a large increase in stability. Another development concerns the notion that there is a fundamental difference between the "laboratory stability" of small pure proteins that unfold reversibly and completely at high temperatures and "industrial stability", which is usually governed by partial unfolding processes followed by some kind of irreversible inactivation process (e.g. aggregation). Provided that one has sufficient knowledge of the mechanism of thermal inactivation, successful and efficient rational stabilization of enzymes can be achieved.  相似文献   

10.
分子酶工程的研究进展   总被引:1,自引:0,他引:1  
随着基因工程和蛋白质工程的进展和应用,酶工程在分子水平上的研究与应用也得到了迅猛发展。本着重介绍了酶基因克隆与异源表达、酶分子的定向改造和进化、融合蛋白与融合酶、酶的人工模拟(抗体酶、分子印迹技术)和端粒酶,综述了分子酶工程的研究进展、趋势及其应用。  相似文献   

11.
The amount of starch escaping absorption in the small intestine was measured in eight patients with symptomatic diverticular disease and eight controls. Unabsorbed starch was calculated from breath hydrogen measurements after a potato meal compared with the hydrogen response to lactulose. The proportion of unabsorbed starch was low in all the patients (mean 3.3%) and was only about a quarter of that in the controls (12.4%; p less than 0.01). These findings confirm that unabsorbed starch provides an important quantity of carbohydrate reaching the colon and suggest that super efficient starch absorption, by reducing this provision, may promote the development of diverticular disease.  相似文献   

12.
13.
Evolving strategies for enzyme engineering   总被引:18,自引:0,他引:18  
Directed evolution is a common technique to engineer enzymes for a diverse set of applications. Structural information and an understanding of how proteins respond to mutation and recombination are being used to develop improved directed evolution strategies by increasing the probability that mutant sequences have the desired properties. Strategies that target mutagenesis to particular regions of a protein or use recombination to introduce large sequence changes can complement full-gene random mutagenesis and pave the way to achieving ever more ambitious enzyme engineering goals.  相似文献   

14.
Methods for automation of nucleic acid selections are being developed. The selection of aptamers has been successfully automated using a Biomek 2000 workstation. Several binding species with nanomolar affinities were isolated from diverse populations. Automation of a deoxyribozyme ligase selection is in progress. The process requires eleven times more robotic manipulations than an aptamer selection. The random sequence pool contained a 5' iodine residue and the ligation substrate contained a 3' phosphorothioate. Initially, a manual deoxyribozyme ligase selection was performed. Thirteen rounds of selection yielded ligators with a 400-fold increase in activity over the initial pool. Several difficulties were encountered during the automation of DNA catalyst selection, including effectively washing bead-bound DNA, pipetting 50% glycerol solutions, purifying single strand DNA, and monitoring the progress of the selection as it is performed. Nonetheless, automated selection experiments for deoxyribozyme ligases were carried out starting from either a naive pool or round eight of the manually selected pool. In both instances, the first round of selection revealed an increase in ligase activity. However, this activity was lost in subsequent rounds. A possible cause could be mispriming during the unmonitored PCR reactions. Potential solutions include pool redesign, fewer PCR cycles, and integration of a fluorescence microtiter plate reader to allow robotic 'observation' of the selections as they progress.  相似文献   

15.
We have created protein domains with extreme surface charge. These mutated domains allow for ion-exchange chromatography under conditions favourable for selective and efficient capture, using Escherichia coli as a host organism. The staphylococcal protein A-derived domain Z (Zwt) was used as a scaffold when constructing two mutants, Zbasic1 and Zbasic2, with high positive surface charge. Far-ultraviolet circular dichroism measurements showed that they have a secondary structure content comparable to the parental molecule Zwt. Although melting temperatures (Tm) of the engineered domains were lower than that of the wild-type Z domain, both mutants could be produced successfully as intracellular full-length products in E. coli and purified to homogeneity by ion-exchange chromatography. Further studies performed on Zbasic1 and Zbasic2 showed that they were able to bind to a cation exchanger even at pH values in the 9 to 11 range. A gene fusion between Zbasic2 and the acidic human serum albumin binding domain (ABD), derived from streptococcal protein G, was also constructed. The gene product Zbasic2-ABD could be purified using cation-exchange chromatography from a whole cell lysate to more than 90% purity.  相似文献   

16.
Kaede is a natural photoconvertible fluorescent protein found in the coral Trachyphyllia geoffroyi. It contains a tripeptide, His 62-Tyr 63-Gly 64, which acts as a green chromophore that is photoconvertible to red following (ultra-) violet irradiation. Here, we report the molecular cloning and crystal structure determination of a new fluorescent protein, KikG, from the coral Favia favus, and its in vitro evolution conferring green-to-red photoconvertibility. Substitution of the His 62-Tyr 63-Gly 64 sequence into the native protein provided only negligible photoconversion. On the basis of the crystal structure, semi-rational mutagenesis of the amino acids surrounding the chromophore was performed, leading to the generation of an efficient highlighter, KikGR. Within mammalian cells, KikGR is more efficiently photoconverted and is several-fold brighter in both the green and red states than Kaede. In addition, KikGR was successfully photoconverted using two-photon excitation microscopy at 760 nm, ensuring optical cell labelling with better spatial discrimination in thick and highly scattering tissues.  相似文献   

17.
案例教学法在《酶工程》教学中的应用   总被引:2,自引:0,他引:2  
魏胜华  汤斌  陶玉贵  孟娜 《生物学杂志》2011,28(5):103-104,110
结合几年来的教学实践,从酶工程教学中实施案例教学法的优势、必要性、过程条件及意义等方面介绍了实施案例教学法在生物工程专业《酶工程》课程教学中的重要地位。通过该教学法的实践,取得了良好教学效果,增强了学生的应用能力。  相似文献   

18.
In this review, we focus on how to develop and rear liver tissue equivalents that can be finally used as liver tissues as a substitute for the original liver. The size should be over 500 cm3 and its per-volume-based functionalities should be those comparable to the in vivo liver. As can easily be imagined, it will necessitate continuous efforts and we cannot predict when it becomes feasible at present. However, we need to set up an appropriate road map based on the latest knowledge concerning various related areas and to make efficient and integrative efforts to address the issues. The efforts that are currently required include design and fabrication of scaffolds, procurement of large mass of mature hepatocytes, rearing of the liver tissue equivalents in vitro and proof-of-concept studies in large animals such as pigs. Through the establishment of fundamental methodologies in such preclinical studies, we will know whether we can proceed to human clinical trials of such tissue equivalents. According to the possible road map, we summarized latest related approaches, with consistently stressing the two important but sometimes conflicting standpoints, that is, optimization of oxygenation supply to the cells in both micro- and macro-scale and three-dimensional (3D) culture of hepatocyte progenitors or stem cells toward hepatic lineages. In addition, we tried to clear up the remaining issues and the clues to overcome them.  相似文献   

19.
Genome engineering technology is of great interest for biomedical research that enables scientists to make specific manipulation in the DNA sequence. Early methods for introducing double-stranded DNA breaks relies on protein-based systems. These platforms have enabled fascinating advances, but all are costly and time-consuming to engineer, preventing these from gaining high-throughput applications. The CRISPR-Cas9 system, co-opted from bacteria, has generated considerable excitement in gene targeting. In this review, we describe gene targeting techniques with an emphasis on recent strategies to improve the specificities of CRISPR-Cas systems for nuclease and non-nuclease applications.  相似文献   

20.
  1. Download : Download high-res image (161KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号