首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paul T. Englund 《Cell》1978,14(1):157-168
Kinetoplast DNA from the mitochondria of Crithidia is in the form of a two-dimensional network of thousands of minicircles each containing about 2.5 kb, and a small number of maxicircles each containing about 40 kb. Fractionation of kinetoplast DNA by equilibrium centrifugation in a CsCl-propidium dilodide gradient resolves it into three types of networks. Form I networks band at high density and contain minicircles which are covalently closed; form II networks band at low density and contain minicircles which are nicked or gapped; and replicating networks band at intermediate density and contain some minicircles of each type. Form I networks contain about 5000 minicircles; form II networks contain about 11,000; and replicating networks contain an intermediate number. When cells are pulse-labeled with 3H-thymidine, radioactivity in mitochondrial DNA is preferentially incorporated into replicating networks, but after a chase it appears first in form II networks and finally in form I. Examination of replicating networks by electron microscopy in the presence of ethidium bromide reveals that minicircles in the central region of the network are twisted and therefore covalently closed, whereas those in the peripheral region are not twisted and therefore must be nicked or gapped. The pulse-label is incorporated into the nicked or gapped minicircles of the replicating networks. These results indicate that replication of form I networks begins in peripheral minicircles and that progeny minicircles remain nicked or gapped. As replication proceeds, the size of the network increases, and the peripheral zone of nicked or gapped minicircles enlarges. Finally, when all minicircles have replicated, the network, now form II, is double the size of form I and contains only nicked or gapped minicircles. The final step in replication presumably includes both the cleavage of the network into two form I species and the covalent closure of all the minicircles.  相似文献   

2.
The structure of replicating kinetoplast DNA networks   总被引:8,自引:2,他引:6       下载免费PDF全文
《The Journal of cell biology》1993,123(5):1069-1079
Kinetoplast DNA (kDNA), the mitochondrial DNA of Crithidia fasciculata and related trypanosomatids, is a network containing approximately 5,000 covalently closed minicircles which are topologically interlocked. kDNA synthesis involves release of covalently closed minicircles from the network, and, after replication of the free minicircles, reattachment of the nicked or gapped progeny minicircles to the network periphery. We have investigated this process by electron microscopy of networks at different stages of replication. The distribution of nicked and closed minicircles is easily detectable either by autoradiography of networks radiolabeled at endogenous nicks by nick translation or by twisting the covalently closed minicircles with intercalating dye. The location of newly synthesized minicircles within the network is determined by autoradiography of network is determined by autoradiography of networks labeled in vivo with a pulse of [3H]thymidine. These studies have clarified structural changes in the network during replication, the timing of repair of nicked minicircles after replication, and the mechanism of division of the network.  相似文献   

3.
The kinetoplast DNA of Trypanosoma brucei consists of 104 minicircles (0.3 μm) and 102 maxicircles (6 μm) held together by catenation in a complex network. In electron micrographs of kinetoplast DNA spread in a protein monolayer we have identified four types of network with the appearance of different stages in network replication and segregation. We show that each network type has characteristic properties with respect to shape, size, number, and location of maxicircle loops and nicked or covalently closed character of minicircles and maxicircles. We propose a detailed model for network segregation that involves a gradual elongation of the network, followed by network cleavage. During this process the basic network structure remains unaltered, implying a complicated mechanism of minicircle rearrangements.  相似文献   

4.
Trypanosomes have an unusual mitochondrial genome, called kinetoplast DNA, that is a giant network containing thousands of interlocked minicircles. During kinetoplast DNA synthesis, minicircles are released from the network for replication as theta-structures, and then the free minicircle progeny reattach to the network. We report that a mitochondrial protein, which we term p38, functions in kinetoplast DNA replication. RNA interference (RNAi) of p38 resulted in loss of kinetoplast DNA and accumulation of a novel free minicircle species named fraction S. Fraction S minicircles are so underwound that on isolation they become highly negatively supertwisted and develop a region of Z-DNA. p38 binds to minicircle sequences within the replication origin. We conclude that cells with RNAi-induced loss of p38 cannot initiate minicircle replication, although they can extensively unwind free minicircles.  相似文献   

5.
The kinetoplast DNA (kDNA) of trypanosomes is comprised of thousands of DNA minicircles and 20-50 maxicircles catenated into a single network. We show that kinetoplasts isolated from the trypanosomatid species Crithidia fasciculata incorporate labeled nucleotides and support minicircle DNA replication in a manner which mimics two characteristics of minicircle replication in vivo: 1) the minicircles are replicated as free molecules and subsequently reattached to the kDNA network, and 2) a replication intermediate having a structure consistent with a highly gapped minicircle species is generated. In addition, a class of minicircle DNA replication intermediates is observed containing discontinuities at specific sites within each of the newly synthesized DNA strands. By using a strain of C. fasciculata possessing nearly homogenous minicircles, we were able to map the discontinuities to two small regions situated 180 degrees apart on the minicircle. Each region has two sites at which a discontinuity can occur, one on each strand and separated by approximately 100 base pairs. These sites may represent origins of minicircle DNA replication.  相似文献   

6.
The rotational dynamics of kinetoplast DNA replication   总被引:3,自引:0,他引:3  
Kinetoplast DNA (kDNA), from trypanosomatid mitochondria, is a network containing several thousand catenated minicircles that is condensed into a disk-shaped structure in vivo. kDNA synthesis involves release of individual minicircles from the network, replication of the free minicircles and reattachment of progeny at two sites on the network periphery approximately 180 degrees apart. In Crithidia fasciculata, rotation of the kDNA disk relative to the antipodal attachment sites results in distribution of progeny minicircles in a ring around the network periphery. In contrast, Trypanosoma brucei progeny minicircles accumulate on opposite ends of the kDNA disk, a pattern that did not suggest kinetoplast motion. Thus, there seemed to be two distinct replication mechanisms. Based on fluorescence microscopy of the kDNA network undergoing replication, we now report that the T. brucei kinetoplast does move relative to the antipodal sites. Whereas the C. fasciculata kinetoplast rotates, that from T. brucei oscillates. Kinetoplast motion of either type must facilitate orderly replication of this incredibly complex structure.  相似文献   

7.
Free minicircles of kinetoplast DNA in Crithidia fasciculata.   总被引:8,自引:0,他引:8  
The major form of kinetoplast DNA in Crithidia fasciculata is a network which contains thousands of minicircles linked together in a two-dimensional array. This paper reports the existence of free minicircles in Crithidia which by several criteria are identical to those in networks. They are the same size (about 2500 base pairs), and they yield the same products upon digestion with restriction enzymes. About 0.4% of the minicircles in exponentially growing nonsynchronized cells are free and the remainder are in networks. After a 5-min pulse with [3H]thymidine, above 10% of all of the incorporated radioactivity in the cell is in free minicircles, and the minicircles have a higher specific radioactivity than the average of other DNAs in the cell. Three-branched structures, which resemble Cairns-type replication intermediates, are occasionally observed by electron microscopy. Kinetic studies of the incorporation of [3H]thymidine into free minicircles indicate that they turn over, and this turnover was confirmed by a pulse-chase experiment. These properties of free minicircles suggest that they may be intermediates in the replication of network minicircles.  相似文献   

8.
Etoposide, a nonintercalating antitumor drug, is a potent inhibitor of topoisomerase II activity. When Trypanosoma equiperdum is treated with etoposide, cleavable complexes are stabilized between topoisomerase II and kinetoplast DNA minicircles, a component of trypanosome mitochondrial DNA (T. A. Shapiro, V. A. Klein, and P. T. Englund, J. Biol. Chem. 264:4173-4178, 1989). Etoposide also promotes the time-dependent accumulation of small minicircle catenanes. These catenanes are radiolabeled in vivo with [3H]thymidine. Dimers are most abundant, but novel structures containing up to five noncovalently closed minicircles are detectable. Analysis by two-dimensional gel electrophoresis and electron microscopy indicates that dimers joined by up to six interlocks are late replication intermediates that accumulate when topoisomerase II activity is blocked. The requirement for topoisomerase II is particularly interesting because minicircles do not share the features postulated to make this enzyme essential in other systems: for minicircles, the replication fork is unidirectional, access to the DNA is not blocked by nucleosomes, and daughter circles are extensively nicked and (or) gapped.  相似文献   

9.
Kinetoplast DNA, the mitochondrial DNA of trypanosomatid protozoa, is a network containing several thousand topologically interlocked DNA minicircles. Kinetoplast DNA synthesis involves release of minicircles from the network, replication of the free minicircles, and reattachment of the progeny back onto the network. One enzyme involved in this process is structure-specific endonuclease-I. This enzyme, originally purified from Crithidia fasciculata, has been proposed to remove minicircle replication primers (Engel, M. L., and Ray, D. S. (1998) Nucleic Acids Res. 26, 4773-4778). We have studied the structure-specific endonuclease-I homolog from Trypanosoma brucei, showing it to be localized in the antipodal sites flanking the kinetoplast DNA disk, as previously shown in C. fasciculata. RNA interference of structure-specific endonuclease-I caused persistence of a single ribonucleotide at the 5' end of both the leading strand and at least the first Okazaki fragment in network minicircles, demonstrating that this enzyme in fact functions in primer removal. Probably because of the persistence of primers, RNA interference also impeded the reattachment of newly replicated free minicircles to the network and caused a delay in kinetoplast DNA segregation. These effects ultimately led to shrinkage and loss of the kinetoplast DNA network and cessation of growth of the cell.  相似文献   

10.
Replication of kinetoplast DNA maxicircles   总被引:10,自引:0,他引:10  
S L Hajduk  V A Klein  P T Englund 《Cell》1984,36(2):483-492
The kinetoplast DNA of Crithidia fasciculata is a massive network composed of thousands of topologically interlocked circles. Most of these circles are minicircles (2.5 kb), and about 50 are maxicircles (37 kb). Previous studies showed that minicircles replicate, after release from the network, via Cairns (theta) intermediates. Here we show that maxicircles replicate, while attached to the network, by an entirely different mechanism involving rolling circle intermediates. After the network-bound maxicircle has finished replication, the branch of the rolling circle is apparently cleaved off to form a linear free maxicircle. A restriction map of the linearized free maxicircles shows that these molecules have unique termini, one of which presumably corresponds to the replication origin.  相似文献   

11.
Changes in network topology during the replication of kinetoplast DNA.   总被引:2,自引:1,他引:1  
J Chen  P T Englund    N R Cozzarelli 《The EMBO journal》1995,14(24):6339-6347
Kinetoplast DNA of Crithidia fasciculata is a network containing several thousand topologically interlocked DNA minicircles. In the prereplicative Form I network, each of the 5000 minicircles is intact and linked to an average of three neighbors (i.e. the minicircle valence is 3). Replication involves the release of minicircles from the interior of the network, the synthesis of nicked or gapped progeny minicircles and the attachment of the progeny to the network periphery. The ultimate result is a Form II network of 10,000 nicked or gapped minicircles. Our measurements of minicircle valence and density, and the network's surface area, revealed striking changes in network topology during replication. During the S phase, the peripheral newly replicated minicircles have a density twice that of minicircles in Form I networks, which suggests that the valence might be as high as 6. Most of the holes in the central region that occur from the removal of intact minicircles are repaired so that the central density and valence remain the same, as in prereplicative networks. When minicircle replication is complete at the end of the S phase, the isolated network has the surface area of a prereplicative network, despite having twice the number of minicircles. During the G2 phase, the Form II network undergoes a remodeling in which the area doubles and the valence is reduced to 3. Finally, the interruptions in the minicircles are repaired and the double-sized network splits in two.  相似文献   

12.
Kinetoplast DNA, the mitochondrial DNA of trypanosomatid parasites, is a network containing several thousand minicircles and a few dozen maxicircles. We compared kinetoplast DNA replication in Trypanosoma brucei and Crithidia fasciculata using fluorescence in situ hybridization and electron microscopy of isolated networks. One difference is in the location of maxicircles in situ. In C. fasciculata, maxicircles are concentrated in discrete foci embedded in the kinetoplast disk; during replication the foci increase in number but remain scattered throughout the disk. In contrast, T. brucei maxicircles generally fill the entire disk. Unlike those in C. fasciculata, T. brucei maxicircles become highly concentrated in the central region of the kinetoplast after replication; then during segregation they redistribute throughout the daughter kinetoplasts. T. brucei and C. fasciculata also differ in the pattern of attachment of newly synthesized minicircles to the network. In C. fasciculata it was known that minicircles are attached at two antipodal sites but subsequently are found uniformly distributed around the network periphery, possibly due to a relative movement of the kinetoplast disk and two protein complexes responsible for minicircle synthesis and attachment. In T. brucei, minicircles appear to be attached at two antipodal sites but then remain concentrated in these two regions. Therefore, the relative movement of the kinetoplast and the two protein complexes may not occur in T. brucei.  相似文献   

13.
Intermediates in the replication of kinetoplast DNA minicircles   总被引:9,自引:0,他引:9  
Kinetoplast DNA of Crithidia fasciculata and other trypanosomatids is in the form of a network of thousands of minicircles and a few dozen maxicircles. Minicircles replicate as free molecules after release from the network, and their progeny subsequently reattach to the network (Englund, P. T. (1979) J. Biol. Chem. 254, 4895-4900). The minicircles just released from the network are covalently closed and apparently completely relaxed. After Cairns-type (theta) replication, the two minicircle progeny have different structures. One has a nascent H (heavy) strand which initially is in the form of 20-110 nucleotide fragments that are separated by gaps (Kitchin, P. A., Klein, V. A., Fein, B. I., and Englund, P. T. (1984) J. Biol. Chem. 259, 15532-15539). The other initially has a full-size (2.5 kilobase) nascent L (light) strand. During the time between formation of these progeny molecules and network reattachment, the nascent L strand is nicked (or gapped) and nascent H strand is partially repaired. Therefore, both progeny, at the time of reattachment, have several nicks (or gaps) in their nascent strand. Minicircle progeny with a nascent L strand reattach to the network quickly, whereas those with a nascent H strand reattach more slowly. Once reattached to the network, the nicks or gaps in the minicircles are repaired until finally covalent closure occurs.  相似文献   

14.
The coding properties of kinetoplast DNA from two respresentatives of the order Kinetoplastidae--Crithidia oncopelti and C. fasciculata--were studied. Experiments on hybridization of the whole network and fraction of minicircles with labelled 23S and 16S rRNA and with tRNA isolated from kinetoplasts of C. oncopelti clearly demonstrated the presence of the genes for these RNAs in the whole network and their absence in the minicircles. It may be thus concluded that the genes of ribosomal and transfer RNAs are localized in the maxicircular molecules. Similar efficiency of hybridization of rRNAs from C. oncopelti with kDNA from C. fasciculata and C. oncopelti revealed significant conservativity of ribosomal genes in the protozoa under study.  相似文献   

15.
The mitochondrial genome of Trypanosoma brucei, called kinetoplast DNA, is a network of topologically interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Kinetoplast DNA synthesis involves release of minicircles from the network, replication of the free minicircles and reattachment of the progeny. Here we report a new function of the mitochondrial topoisomerase II (TbTOP2mt). Although traditionally thought to reattach minicircle progeny to the network, here we show that it also mends holes in the network created by minicircle release. Network holes are not observed in wild‐type cells, implying that this mending reaction is normally efficient. However, RNAi of TbTOP2mt causes holes to persist and enlarge, leading to network fragmentation. Remarkably, these network fragments remain associated within the mitochondrion, and many appear to be appropriately packed at the local level, even as the overall kinetoplast organization is dramatically altered. The deficiency in mending holes is temporally the earliest observable defect in the complex TbTOP2mt RNAi phenotype.  相似文献   

16.
Hines JC  Ray DS 《Eukaryotic cell》2011,10(3):445-454
The mitochondrial DNA of trypanosomes contains two types of circular DNAs, minicircles and maxicircles. Both minicircles and maxicircles replicate from specific replication origins by unidirectional theta-type intermediates. Initiation of the minicircle leading strand and also that of at least the first Okazaki fragment involve RNA priming. The Trypanosoma brucei genome encodes two mitochondrial DNA primases, PRI1 and PRI2, related to the primases of eukaryotic nucleocytoplasmic large DNA viruses. These primases are members of the archeoeukaryotic primase superfamily, and each of them contain an RNA recognition motif and a PriCT-2 motif. In Leishmania species, PRI2 proteins are approximately 61 to 66 kDa in size, whereas in Trypanosoma species, PRI2 proteins have additional long amino-terminal extensions. RNA interference (RNAi) of T. brucei PRI2 resulted in the loss of kinetoplast DNA and accumulation of covalently closed free minicircles. Recombinant PRI2 lacking this extension (PRI2ΔNT) primes poly(dA) synthesis on a poly(dT) template in an ATP-dependent manner. Mutation of two conserved aspartate residues (PRI2ΔNTCS) resulted in loss of enzymatic activity but not loss of DNA binding. We propose that PRI2 is directly involved in initiating kinetoplast minicircle replication.  相似文献   

17.
Crithidia fasciculata nicking enzyme (Shlomai, J., and Linial, M. (1986) J. Biol. Chem. 261, 16219-16225) interrupts a single phosphodiester bond in duplex DNA circles from various sources, only in their supercoiled form, but not following their relaxation by DNA topoisomerases. However, this requirement for DNA substrate supercoiling was not observed using the natural kinetoplast DNA as a substrate. Relaxed kinetoplast DNA minicircles, either free or topologically linked, were efficiently nicked by the enzyme. Furthermore, bacterial plasmids, containing a unit length kinetoplast DNA minicircle insert, were used as substrates for nicking in their relaxed form. This capacity to activate a relaxed DNA topoisomer as a substrate for nicking is an intrinsic property of the sequence-directed bend, naturally present in kinetoplast DNA. The 211-base pair fragment of the bent region from C. fasciculata kinetoplast DNA could support the nicking of a relaxed DNA substrate in a reaction dependent upon the DNA helix curvature.  相似文献   

18.
Transcription of kinetoplast DNA minicircles   总被引:11,自引:0,他引:11  
  相似文献   

19.
Newly replicated duplex DNA minicircles of trypanosomal kinetoplast DNA are nicked in both their monomeric and catenated topological states, whereas mature ones are covalently sealed. The possibility that nicking may play a role during kinetoplast DNA replication by affecting the topological interconversions of monomeric DNA minicircles and catenane networks was studied here in vitro using Crithidia fasciculata DNA topoisomerase. An enzyme that catalyzes the nicking of duplex DNA circles has been purified to apparent homogeneity from C. fasciculata cell extracts. The native enzyme has a sedimentation coefficient of 6.8 S and was found to be a dimer with a protomer Mr = 60,000. Nicking of kinetoplast DNA networks by the purified enzyme inhibits their decatenation by the Crithidia DNA topoisomerase but has no effect on the catenation of monomeric DNA minicircles into networks. This differential effect on decatenation versus catenation is specific to the purified nicking enzyme. Random nicking of interlocked DNA minicircles has no detectable effect on the reversibility of the topological reaction. The potential role of Crithidia nicking enzyme in the replication of kinetoplast DNA networks in trypanosomatids is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号