首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugar consumption by turkey spermatozoa for 1 hr at 37 degrees C was similar in the presence or absence of oxygen, and with glucose or fructose in the medium. Motility of the spermatozoa at the end of the above incubation period was lower under anaerobic than aerobic conditions. Fructose enhanced the oxygen uptake of spermatozoa in comparison with that in the glucose-containing medium. Omission of sugar from the medium depressed respiration but not motility of the spermatozoa. The rate of oxygen uptake by the spermatozoa during a 3-hr incubation period was higher in a 3.3-mM than a 15.0-mM glucose medium. Fructose was formed from glucose under aerobic but not under anaerobic conditions. Fructose originating from glucose was used for fructolysis, when the glucose reserve in the medium was almost exhausted.  相似文献   

2.
3.

1. 1.Laceria vivipara were hibernated from October to March. Respiration rates were measured at various times during this period and compared with respiration rates of lizards at the same temperatures in July.

2. 2.Rates of respiration at 10°C soon after entry into hibernation and towards the end of the dormant period did not differ significantly from rates at 10°C in July.

3. 3.After several weeks in hibernation at 10°C a depression of metabolism occurred which produced acclimated respiration rates significantly lowe than 10°C rates measured at other times of year. This is interpreted as a probable case of negative metabolic compensation to temperature (inverse acclimation).

4. 4.No difference in respiration rates at 5°C could be detected between dormant and summer lizards.

5. 5.Energy expenditure during winter dormancy accounts for approximately 5% of the energy assimilated annually from food. Inverse acclimation at 10°C effects an energy saving amounting to about 35% of the total dormancy expenditure.

Author Keywords: Hibernation; Oxygen consumption; metabolic adaptation; energy expenditure; Lizard; Lacerta vivipara  相似文献   


4.
In order to characterize the contributions of respiratory and photosynthetic actions to energy conversions, the mixotrophic cells of Marchantia polymorpha were cultivated in the medium containing 10kg/m(3) glucose as an organic carbon source. The cultures were conducted with the supply of ordinary air (0.03% CO(2)) at constant incident light intensities of 50 and 180W/m(2). From the results of metabolic analysis, it was found that the cell yield based on ATP synthesis was estimated to be 6.3x10(-3)kg-dry cells/mol-ATP in these cultures. Under the examined conditions, energy conversion efficiency through respiration was larger than that through photosynthesis, and efficiency of overall energy conversion to ATP was maximized when the sum of energies from glucose and light captured by the cells was approximately 7.2x10(5)J/(hkg-dry cells). Taking into account the efficiency of overall energy conversion, a batch culture of M. polymorpha in a bioreactor was carried out by regulating incident light intensity ranging from 9 to 58W/m(2). In the culture with light regulation, the cell yield of 6.2x10(-9)kg-dry cells/J was achieved on the basis of energy provided to the system throughout the culture, and this value was 2.3 and 9.3 times as large as those obtained in the cultures under constant incident light intensities of 50 and 180W/m(2), respectively.  相似文献   

5.
Sequestration of nucleotides in cells through protein binding could influence the availability of nucleotides and free energy for metabolic reactions and, therefore, affect rates of physiological processes. We have estimated the proportion of nucleotides bound to proteins in maize (Zea mays L.) root tips. Binding of nucleoside mono- and diphosphates to total root-tip protein was studied in vitro using high-performance liquid chromatography and a new ligand-binding technique. We estimate that approximately 40% of the ADP, 65% of the GDP, 50% of the AMP, and virtually all the GMP in aerobic cells are bound to proteins. In hypoxic cells, free concentrations of these nucleotides increase proportionately much more than total intracellular concentrations. Little or no binding of CDP, UDP, CMP, and UMP was observed in vitro. Binding of nucleoside triphosphate (NTP) to protein was estimated from in vivo 31P-nuclear magnetic resonance relaxation measurements. In aerobic root tips most (approximately 70%) of the NTP is free, whereas under hypoxia NTP appears predominantly bound to protein. Our results indicate that binding of nucleotides to proteins in plant cells will significantly influence levels of free purine nucleotides available to drive and regulate respiration, protein synthesis, ion transport, and other physiological processes.  相似文献   

6.
盐度波动对中国对虾稚虾蜕皮、生长和能量收支的影响   总被引:1,自引:0,他引:1  
采用实验生态学方法研究了在盐度为20的条件下,4个盐度波动幅度(2、4、6、8)对中国对虾稚虾蜕皮和生长的影响.结果表明:中国对虾的蜕皮率为13.3%~15.4%,处理间差异未达到显著水平;盐度波动幅度为4的情况下,对虾的特定生长率最大,用在生长上的能量最高,用于呼吸的能量最低,生长迅速;盐度波动幅度为2的情况下,中国对虾的摄食量最低;盐度波动幅度为2和4的情况下,对虾的食物转化效率最高;不同处理中国对虾用在蜕皮上的能量差异不显著.盐度波动幅度过大不利于中国对虾稚虾的生长,但对蜕皮无影响.  相似文献   

7.
Are there intrinsic differences in the rates of photosynthesis, shoot- and root-respiration between inherently fast- and slow-growing monocotyledons at high and low nitrogen supply? To analyze this question we grew 5 monocotyledons, widely differing in their inherent relative growth rate at high and low nitrogen supply in a growth room. Nitrate was exponentially added to the plants, enabling us to compare inherent differences in plant characteristics, without any effect of species differences in the ability to take up nutrients. At high nitrogen supply, the fast-growing species from productive habitats had a higher photosynthetic nitrogen use efficiency and rate of root respiration than the slow-growing ones from unproductive habitats. Only minor differences were observed in their rates of photosynthesis and shoot respiration per unit leaf area. At low nitrogen supply, the rates of photosynthesis and shoot- and root respiration decreased for all species, even though there were no longer any differences in these processes between inherently fast- and slow-growing species. The photosynthetic nitrogen use efficiency increased for all species, and no differences were found among species. Differences in the photosynthetic nitrogen use efficiency among species and nitrogen treatments are discussed in terms of the utilization of the photosynthetic apparatus, whereas differences in respiration rate are discussed in terms of the energy demand for growth, maintenance and ion uptake and their related specific respiratory energy costs. It is concluded that the relatively high abundance of slow-growing species compared to fast-growing ones in unproductive habitats is unlikely to be explained by differences in rates of photosynthesis and respiration or in photosynthetic nitrogen use efficiency.  相似文献   

8.
Diluted bull semen samples were bombarded with a 24 Mev proton beam. Dose response curves for the fraction of cells which survived the bombardment and for the average velocity of the surviving cells were measured. Target theory indicated a cross section of the sensitive volume of 2.1 × 10-10 cm2. Respiration measurements showed that the oxidative phosphorylation in the sperm remained coupled after the bombardments. The efficiency with which free energy from ATP hydrolysis was converted into mechanical work by the sperm was found to decrease after proton bombardment. The half-value dose for this effect was two and a half times higher than the half-value dose for motility damage. These respiration measurements indicate that the damage due to the bombardment is not to the metabolic system or to the contractile system in the sperm flagellum, but to a control system for the motility. The results of the target theory shows that this control system is localized in a small element of approximately 1600 A diameter. The centriole is tentatively proposed as being this control element.  相似文献   

9.
The purpose of this experiment was to determine how respirationof soybeans may respond to potential increases in atmosphericcarbon dioxide concentration and growth temperature. Three cultivarsof soybeans (Glycine max L. Merr.), from maturity groups 00,IV, and VIII, were grown at 370, 555 and 740cm3m-3carbon dioxideconcentrations at 20/15, 25/20, and 31/26°C day/night temperatures.Rates of carbon dioxide efflux in the dark were measured forwhole plants several times during exponential growth. Thesemeasurements were made at the night temperature and the carbondioxide concentration at which the plants were grown. For thelowest and highest temperature treatments, the short term responseof respiration rate to measurement at the three growth carbondioxide concentrations was also determined. Elemental analysisof the tissue was used to estimate the growth conversion efficiency.This was combined with the observed relative growth rates toestimate growth respiration. Maintenance respiration was estimatedas the difference between growth respiration and total respiration.Respiration rates were generally sensitive to short term changesin the measurement carbon dioxide concentration for plants grownat the lowest, but not the highest carbon dioxide concentration.At all temperatures, growth at elevated carbon dioxide concentrationsdecreased total respiration measured at the growth concentration,with no significant differences among cultivars. Total respirationincreased very little with increasing growth temperature, despitean increase in relative growth rate. Growth respiration wasnot affected by carbon dioxide treatment at any temperature,but increased with temperature because of the increase in relativegrowth rate. Values calculated for maintenance respiration decreasedwith increasing carbon dioxide concentration and also decreasedwith increasing temperature. Calculated values of maintenancerespiration were sometimes zero or negative at the warmer temperatures.This suggests that respiration rates measured in the dark maynot have reflected average 24-h rates of energy use. The resultsindicate that increasing atmospheric carbon dioxide concentrationmay reduce respiration in soybeans, and respiration may be insensitiveto climate warming. Glycine max L. (Merr.); carbon dioxide; respiration; temperature; climate change  相似文献   

10.
11.
SUMMARY. Assimilation budgets (i.e. assimilation = respiration + excretion + production) are presented for cohorts of P. zietziana in two salt lakes. Shrimps in Pink Lake had an assimilation rate of 1631.6 kJ m−2 year −1, those in Lake Cundare 212.1 kJ m−2 year−1. In both lakes, respiration accounted for 60–80% of assimilation. Assimilation rates for individuals (derived as assimilation = ingestion minus faecal output) are also given and compared with respiratory rates of individuals. The comparisons indicated that energy was often consumed at a higher rate by respiration than it could be supplied by assimilation. Starvation due to a low assimilation efficiency was suggested as a cause of the consistent mortality, variable growth rate of individuals and unpredictable recruitment which were characteristic of the cohorts of P. zietziana in both lakes. An analysis of mortality showed that the young had the poorest survival, as predicted by a theoretical model of a starving zooplankter and a comparison of the increase with weight of ingestion and respiration. Gross growth efficiency (production: assimilation) was 15–30%, about the same as published data on Anostracans. Net growth efficiency (production : consumption) was 5–12% and generally lower than published values reflecting the difficulty P. zietziana has in balancing its budget.  相似文献   

12.
Physiological adjustment to water of reduced salinity requires energy expenditure. In this study we sought to determine the fitness costs associated with such adjustment in the euryhaline polychaete Capitella sp. I, and the extent to which such costs could be explained by increased rates of energy expenditure. In a series of experiments conducted at 20 degrees C, salinity was reduced from 30 per thousand to either 25, 20, 15, 12, or 10 per thousand within 72 h after the larvae had been induced to metamorphose. Juveniles were reared on fine, organic-rich sediment. Over the next 15-30 days, we determined survival, growth, fecundity, and rates of respiration and feeding (via fecal pellet production). Larval salinity tolerance was also determined. Juvenile survival at salinities as low as 12-15 per thousand was comparable to that at 30 per thousand. The lower limit of salinity tolerance was 10-12 per thousand at 20 degrees C for both larvae and juveniles. Juveniles grew significantly more slowly at 12-15 per thousand in six of the seven experiments. Fecundity, however, was generally highest at intermediate salinities of 20-25 per thousand, and comparable at 30 and 15 per thousand. No individuals released embryos at 12 per thousand over the approximately 30-day observation periods in any of the three experiments in which the worms were reared at this low salinity. Reduced growth rates were not explained by differences in rates of respiration at different salinities: at reduced salinity, respiration rates were either statistically equivalent to (P>0.10) or significantly below (P<0.05) those recorded for animals maintained at 30 per thousand. Lower growth rates at lower salinities were best explained by reduced feeding rates. Further studies are required to determine whether digestive efficiency, growth hormone concentrations, or reproductive hormone concentrations are also altered by low salinity in this species.  相似文献   

13.
In this study the propelling efficiency (ep) of front-crawl swimming, by use of the arms only, was calculated in four subjects. This is the ratio of the power used to overcome drag (Pd) to the total mechanical power (Po) produced including power wasted in changing the kinetic energy of masses of water (Pk). By the use of an extended version of the system to measure active drag (MAD system), Pd was measured directly. Simultaneous measurement of O2 uptake (VO2) enabled the establishment of the relationship between the rate of the energy expenditure (PVO2) and Po (since when swimming on the MAD system Po = Pd). These individual relationships describing the mechanical efficiency (8-12%) were then used to estimate Po in free swimming from measurements of VO2. Because Pd was directly measured at each velocity studied by use of the MAD system, ep could be calculated according to the equation ep = Pd/(Pd + Pk) = Pd/Po. For the four top class swimmers studied, ep was found to range from 46 to 77%. Total efficiency, defined as the product of mechanical and propelling efficiency, ranged from 5 to 8%.  相似文献   

14.
亚热带森林转换对土壤微生物呼吸及其熵值的影响   总被引:1,自引:0,他引:1  
土壤微生物呼吸及其熵值是表征土壤质量变化的敏感性指标,不仅能衡量土壤微生物碳利用效率,还能揭示土壤有机碳的变化。通过比较亚热带米槠天然林转换为马尾松人工林和杉木人工林后土壤微生物呼吸速率、土壤微生物生物量碳以及微生物熵、代谢熵的差异,研究亚热带森林转换对土壤微生物碳利用效率的影响。研究结果显示:(1)与天然林相比,马尾松人工林0—10 cm土壤微生物呼吸速率上升32%(P0.05),马尾松人工林和杉木人工林10—20 cm土壤微生物呼吸速率分别下降26%和24%(P0.05);但在20—40 cm土层和40—60 cm土层,天然林土壤微生物呼吸速率比马尾松人工林分别高50%和43%;(2)马尾松人工林和杉木人工林0—10 cm土层土壤微生物生物量碳(MBC)比天然林分别下降19%和40%(P0.05),但马尾松人工林10—20 cm土壤MBC上升29%(P0.05);(3)人工林表层土壤微生物熵与天然林没有显著差异,但与天然林相比,杉木人工林和马尾松人工林20—40 cm土层土壤微生物熵分别下降51%和71%(P0.05),40—60 cm分别下降52%、66%(P0.05)。土壤微生物代谢熵的变化主要发生在0—10 cm土层,马尾松人工林和杉木人工林分别比天然林增加38%和29%(P0.05),在深层土壤,3种林分微生物代谢熵没有显著差异。亚热带森林转换导致表层土壤微生物碳利用效率下降,深层土壤易分解碳在总有机碳库中占比下降,有机碳可利用程度降低。  相似文献   

15.
The standard free energy change of the unimolecular conversion between the folded-chain beta-structure and random coil of uncharged poly(S-carboxymethyl-L-cysteine) was evaluated from the potentiometric titration curves extrapolated to zero time to reduce the effect of aggregation which occurred at slower rates than chain folding for most degrees of ionization. To reduce the remaining contribution from the aggregation, the results obtained at finite concentrations were further extrapolated to zero polymer concentration. A value of -(400 +/- 100) cal/mol was obtained for a sample of chain length 630. From the titration curves at the aggregation equilibrium, the total free energy change of the whole solution associated with the same conversion was determined. The contribution made by aggregation to the stability was determined from the difference between these two quantities, which turned out to be comparable with that from the unimolecular conversion.  相似文献   

16.
The motility of the purple sulfur bacterium Marichromatium gracile was investigated under different light regimes in a gradient capillary setup with opposing oxygen and sulfide gradients. The gradients were quantified with microsensors, while the behavior of swimming cells was studied by video microscopy in combination with a computerized cell tracking system. M. gracile exhibited photokinesis, photophobic responses, and phobic responses toward oxygen and sulfide. The observed migration patterns could be explained solely by the various phobic responses. In the dark, M. gracile formed an approximately 500-microm-thick band at the oxic-anoxic interface, with a sharp border toward the oxic zone always positioned at approximately 10 microM O(2). Flux calculations yielded a molar conversion ratio S(tot)/O(2) of 2.03:1 (S(tot) = [H(2)S] + [HS(-)] + [S(2-)]) for the sulfide oxidation within the band, indicating that in darkness the bacteria oxidized sulfide incompletely to sulfur stored in intracellular sulfur globules. In the light, M. gracile spread into the anoxic zone while still avoiding regions with >10 microM O(2). The cells also preferred low sulfide concentrations if the oxygen was replaced by nitrogen. A light-dark transition experiment demonstrated a dynamic interaction between the chemical gradients and the cell's metabolism. In darkness and anoxia, M. gracile lost its motility after ca. 1 h. In contrast, at oxygen concentrations of >100 microM with no sulfide present the cells remained viable and motile for ca. 3 days both in light and darkness. Oxygen was respired also in the light, but respiration rates were lower than in the dark. Observed aggregation patterns are interpreted as effective protection strategies against high oxygen concentrations and might represent first stages of biofilm formation.  相似文献   

17.
Cryopreservation of spermatozoa is of essential importance for artificial insemination and breeding programs in horses. Besides other factors, spermatozoal motility depends on mitochondrial energy metabolism. Based on changes of single mitochondrial functions it has been suggested that mitochondrial damage during cryopreservation could be a major reason for diminished post thaw semen quality. However, it is still unclear to which extent this influences the whole bioenergetic performance of mitochondria and whether this plays a role during routine cryopreservation procedures. Therefore, it was the aim of this study to compare changes in mitochondrial bioenergetics in spermatozoa during shock freezing and routine cryopreservation. Mitochondrial integrity in spermatozoa was studied by determination of oxygen consumption, mitochondrial membrane potential, and the oxidation of externally added cytochrome c(2+). Shock freezing of spermatozoa resulted in an irreversible loss of mitochondrial functions. However, respiration difference of uncoupled minus resting state and routine respiration also decreased by 48+/-14 and 58+/-6% (p<0.05), respectively, after routine cryopreservation. This was accompanied by a decline in the mitochondrial membrane potential to 83+/-4% (p<0.05) and spermatozoal motility to 56+/-11% (p<0.05) of pre-freezing values. In contrast, the oxidation rates of externally added cytochrome c(2+) by cytochrome c oxidase slightly increased by 26+/-14% (p<0.1) suggesting a partial rupture of cellular and outer mitochondrial membranes. Our data indicate that also widely used cryopreservation protocols for equine spermatozoa need adjustment to optimize post thaw mitochondrial functions.  相似文献   

18.
Survival was generally high, 94–100%, for newly hatched larvae of the nase Chondrostoma nasus held at 10, 13, 16, 19, 22, 25 and 28° C up to day 66 post-fertilization. The developmental rate decreased with age and increased with temperature. Specific growth rates increased with temperature; within one temperature range growth rate decreased with ontogenetic development. Food consumption and respiration increased with temperature and body size. A temperature increase from 25 to 28° C resulted in slightly reduced survival, minor acceleration of developmental growth and respiration rates, and impeded skeleton formation. Growth efficiency of consumed energy decreased throughout the larval period from 55 to 67% at the first larval stage (L1) to 36–48% at the first juvenile stage (J1). A similar trend for assimilation efficiency and its utilization for growth was observed. The constant temperatures required by larval nase ranged from a minimum 8–10° C to a maximum 25–28° C. A shift of optimum temperatures, 8–12, 13–16, 15–18, 19 and 22° C for nase spawning, embryonic development, yolk feeding larvae, early externally feeding larvae and, late larvae and juveniles, respectively, paralleled the spring rise in the river water temperature. Larval and juvenile nase show high survival, growth and energy conversion efficiencies compared with other fish species. On the other hand, low survival rates and growth can be attributed to external perturbations; thus, young nase may be considered a good indicator of the environmental and ecological integrity of river systems.  相似文献   

19.
Chlamydomonas is one of the most well-studied photosynthetic organisms that had important biotechnological potential for future bioproductions of biofuels. However, an energy balance from incident photons to the energy stored in the new biomass is still lacking. In this study, we applied a recently developed system to measure the energy balance for steady state growth of Chlamydomonas reinhardtii grown at pH 6.5, and C. acidophila that was grown at pH 6.5 and 2.6. Energy use efficiency was quantified on the basis of light absorption, photosynthetic quantum yield, photosynthetic and respiratory quotient, and electron partitioning into proteins, carbohydrates and lipids. The results showed that lower growth rates of C. acidophila under both pH conditions were not caused by the differences in the photosynthetic quantum yield or in alternative electron cycling, but rather by differences in the efficiency of light absorption and increased dark respiration. Analysis of the macromolecular composition of the cells during the light phase showed that C. acidophila uses biosynthetic electrons preferentially for carbohydrate synthesis but not for synthesis of lipids. This led to a strong diurnal cycle of the C/N ratio and could explain the higher dark respiration of C. acidophila compared with C. reinhardtii .  相似文献   

20.
中国北方农牧交错带的生态环境问题引起了人们广泛关注.经过多年的攻关研究,以能物流理论为指导,根据地处北方农牧交错带的后山旱农区的自然、社会、经济特征,提出了以丘陵为单元的生态治理模式.1999年对传统顺坡种植模式、人工草地模式和生态治理模式进行观测.能物流分析结果表明,生态治理模式与传统的种植模式相比,能提高太阳能利用率8.3%,提高能量输出量8.7%,提高能量转化效率19.4%,N的输出量提高26.5%,转化效率提高57.1%,P的输出量提高12.1%,转化效率提高45.0%,水分利用效率提高17.7%.人工草地模式与传统模式和生态治理模式相比,其太阳能利用率、能量输出量、能量转化效率都是最低的.治理模式产出最多,盈利最多,是经济效益最好的模式,经济效率比传统模式提高16.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号