首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sheu SH  Kaya T  Waxman DJ  Vajda S 《Biochemistry》2005,44(4):1193-1209
Solvent mapping moves molecular probes, small organic molecules containing various functional groups, around the protein surface, finds favorable positions, clusters the conformations, and ranks the clusters based on the average free energy. Using at least six different solvents as probes, the probes cluster in major pockets of the functional site, providing detailed and reliable information on the amino acid residues that are important for ligand binding. Solvent mapping was applied to 12 structures of the peroxisome proliferator activated receptor gamma (PPARgamma) ligand-binding domain (LBD), including 2 structures without a ligand, 2 structures with a partial agonist, and 8 structures with a PPAR agonist bound. The analysis revealed 10 binding "hot spots", 4 in the ligand-binding pocket, 2 in the coactivator-binding region, 1 in the dimerization domain, 2 around the ligand entrance site, and 1 minor site without a known function. Mapping is a major source of information on the role and cooperativity of these sites. It shows that large portions of the ligand-binding site are already formed in the PPARgamma apostructure, but an important pocket near the AF-2 transactivation domain becomes accessible only in structures that are cocrystallized with strong agonists. Conformational changes were seen in several other sites, including one involved in the stabilization of the LBD and two others at the region of the coactivator binding. The number of probe clusters retained by these sites depends on the properties of the bound agonist, providing information on the origin of correlations between ligand and coactivator binding.  相似文献   

2.
The GABA(A) receptor is an oligopentameric chloride channel that is activated via conformation changes induced upon the binding of the endogenous ligand, GABA, to the extracellular inter-subunit interfaces. Although dozens of amino acid residues at the α/β interface have been implicated in ligand binding, the structural elements that mediate ligand binding and receptor activation are not yet fully described. In this study, double-mutant cycle analysis was employed to test for possible interactions between several arginines (α?R67, α?R120, α?R132, and β?R207) and two aromatic residues (β?Y97 and β?F200) that are present in the ligand-binding pocket and are known to influence GABA affinity. Our results show that neither α?R67 nor α?R120 is functionally coupled to either of the aromatics, whereas a moderate coupling exists between α?R132 and both aromatic residues. Significant functional coupling between β?R207 and both β?Y97 and β?F200 was found. Furthermore, we identified an even stronger coupling between the two aromatics, β?Y97 and β?F200, and for the first time provided direct evidence for the involvement of β?Y97 and β?F200 in GABA binding. As these residues are tightly linked, and mutation of either has similar, severe effects on GABA binding and receptor kinetics, we believe they form a single functional unit that may directly coordinate GABA.  相似文献   

3.
A homology model of the extracellular domain of the mGlu3 subtype of metabotropic glutamate (mGlu) receptor was generated and tested using site-directed mutagenesis, a radioligand-binding assay using the Group II selective agonist (2S,2'R,3'R)-2-(2',3'-[3H]dicarboxycyclopropyl) glycine ([3H]DCG-IV), and in a fluorescence-based functional assay in live transiently transfected human embryonic kidney cells. Ten of the 12 mGlu3 mutants (R64A, R68A, Y150A, S151A, T174A, D194A, Y222A, R277A, D301A and K389) showed either no binding or a 90% or greater loss of specific [3H]DCG-IV binding. Several analogous mutations in mGlu2 supported the results obtained with mGlu3. These results demonstrate that the binding of [3H]DCG-IV to mGlu3 is exceptionally sensitive to mutagenesis-induced perturbations. In silico docking of DCG-IV into the agonist binding pocket of mGlu3 facilitated the interpretation the mutagenesis results. Tyrosines 150 and 222, and arginine 277 show close contacts with the third carboxylic acid group in DCG-IV, which is not present in glutamate or (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I). Mutation of these three amino acids to alanine resulted in a near complete loss of receptor activation by DCG-IV and retention of near wild-type affinity for L-CCG-I. It is proposed that hydrogen bonding between this carboxylate and tyrosines 150 and 222 and arginine 277 provide a partial explanation for the high affinity and Group II selectivity of DCG-IV. These findings define the essential features of the ligand-binding pocket of mGlu3 and, together with other recent studies on mGlu receptors, provide new opportunities for structure-based drug design.  相似文献   

4.
Bitter taste receptors (T2Rs) are a group of 25 G protein-coupled receptors (GPCRs) in humans. The cognate agonists and the mechanism of ligand binding to the majority of the T2Rs remain unknown. Here we report the first structure-function analysis of T2R7 and study the ability of this receptor to bind to different agonists by site-directed mutagenesis. Screening of ligands for T2R7 in calcium based assays lead to the identification of novel compounds that activate this receptor. Quinine, diphenidol, dextromethorphan and diphenhydramine showed substantial activation of T2R7. Interestingly, these bitter compounds showed different pharmacological characteristics. To investigate the structural features in T2R7 that might contribute to the observed differences in agonist specificities, molecular model guided ligand docking and site-directed mutagenesis was pursued. Amino acids D65, D86, W89, N167, T169, W170, S181, T255 and E271 in the ligand-binding pocket were replaced and the mutants characterized pharmacologically. Our results suggest D86, S181 and W170 present on the extracellular side of transmembrane 3 (TM3), TM5 and in extracellular loop 2 (ECL2) are essential for agonist binding in T2R7. Mutations of these amino acids lead to loss-of-function. We also identified gain-of-function residues that are agonist specific. These results suggest that agonists bind at an extracellular site rather than deep within the TM core involving residues present in both ECL2 and TM helices in T2R7. Similar to majority of the Class A GPCRs, ECL2 in T2R7 plays a significant role in agonist binding and activation.  相似文献   

5.
The metabotropic glutamate receptors (mGluRs) are key modulators of excitatory neurotransmission in the central nervous system. The eight mGluR subtypes are seven trans-membrane-spanning proteins that possess a large extracellular amino-terminal domain in which the endogenous ligand binding pocket resides. In this study, we have identified four non-conserved amino acid residues that are essential for differentiating mGluR1 from mGluR4. Our approach has been to increase the affinity of the classic mGluR1 agonists, quisqualic acid and ibotenic acid, at mGluR4 by making various point mutations that mimicked mGluR1 residues. Based on ligand docking to homology models, the non-conserved residues, Lys-74, Glu-287, Ser-313, and Lys-317, were chosen for the mutational studies and all of the mutations proved capable of partially or completely restoring the affinities of the ligands. In particular, the mutations K74Y and K317R induced dramatic triple-order-of-magnitude increases in the affinity of ibotenic acid at mGluR4, making the affinity equivalent to that of mGluR1. Furthermore, the affinity of quisqualic acid at mGluR4 was increased to the same level as mGluR1 by the two double mutations, K74Y/K317R and K74Y/E287G. Advanced analysis of ligand conformation and docking procedures were used for the interpretation of these results. The study shows that mGluR subtype selectivity results from a complex interplay of residues shaping the binding pocket, rather than being attributable to a single specific ligand-receptor interaction.  相似文献   

6.
To understand the ligand binding properties of the human GnRH receptor (hGnRH-R), 24 site-specific mutants within transmembrane helices (TMH) 1, 2, and 5 and the extracellular loop 2 (E2) were generated. These mutants were analyzed by using a functional reporter gene assay, monitoring receptor signaling via adenylate cyclase to a cAMP-responsive element fused to Photinus pyralis luciferase. The functional behavior of 14 receptor mutants, capable of G-protein coupling and signaling, was studied in detail with different well described agonistic and antagonistic peptide ligands. Furthermore, the binding constants were determined in displacement binding experiments with the antagonist [125I]Cetrorelix. The substitution of residues K36, Q204, W205, H207, Q208, F20, F213, F216, and S217 for alanine had no or only a marginal effect on ligand binding and signaling. In contrast, substitution of N87, Eg9, D9, R179, W206, Y211, F214, and T215 for alanine resulted in receptor proteins neither capable of ligand binding nor signal transduction. Within those mutants affecting ligand binding and signaling to various degrees, W101A, N102A, and N212Q differentiate between agonists and antagonists. Thus, in addition to N102 already described, the residues W101 in TMH2 and N212 in TMH5 are important for the architecture of the ligand-binding pocket. Based on the experimental data, three-dimensional models for binding of the superagonist D-Trp6-GnRH (Triptorelin) and the antagonist Cetrorelix to the hGnRH-R are proposed. Both decapeptidic ligands are bound to the receptor in a bent conformation with distinct interactions within the binding pocket formed by all TMHs, E2, and E3. The antagonist Cetrorelix with bulky hydrophobic N-terminal amino acids interacts with quite different receptor residues, a hint at the failure to induce an active, G protein-coupling receptor conformation.  相似文献   

7.
8.
The functional insect ecdysteroid receptor is comprised of the ecdysone receptor (EcR) and Ultraspiracle (USP). The ligand-binding domain (LBD) of USP was fused to the GAL4 DNA-binding domain (GAL4-DBD) and characterized by analyzing the effect of site-directed mutations in the LBD. Normal and mutant proteins were tested for ligand and DNA binding, dimerization, and their ability to induce gene expression. The presence of helix 12 proved to be essential for DNA binding and was necessary to confer efficient ecdysteroid binding to the heterodimer with the EcR (LBD), but did not influence dimerization. The antagonistic position of helix 12 is indispensible for interaction between the fusion protein and DNA, whereas hormone binding to the EcR (LBD) was only partially reduced if fixation of helix 12 was disturbed. The mutation of amino acids, which presumably bind to a fatty acid evoked a profound negative influence on transactivation ability, although enhanced transactivation potency and ligand binding to the ecdysteroid receptor was impaired to varying degrees by mutation of these residues. Mutations of one fatty acid-binding residue within the ligand-binding pocket, 1323, however, evoked enhanced transactivation. The results confirmed that the LBD of Ultraspiracle modifies ecdysteroid receptor function through intermolecular interactions and demonstrated that the ligand-binding pocket of USP modifies the DNA-binding and transactivation abilities of the fusion protein.  相似文献   

9.
Mutants created by site-directed mutagenesis were used to elucidate the function of amino acids involved in ligand binding to ecdysteroid receptor (EcR) and heterodimer formation with ultraspiracle (USP). The results demonstrate the importance of the C-terminal part of the D-domain and helix 12 of EcR for hormone binding. Some amino acids are involved either in ligand binding to EcR (E476, M504, D572, I617, N626) or ligand-dependent heterodimerization as determined by gel mobility shift assays (A612, L615, T619), while others are involved in both functions (K497, E648). Some amino acids are suboptimal for ligand binding (L615, T619), but mediate ligand-dependent dimerization. We conclude that the enhanced regulatory potential by ligand-dependent modulation of dimerization in the wild type is achieved at the expense of optimal ligand binding. Mutation of amino acids (K497, E648) involved in the salt bridge between helix 4 and 12 impair ligand binding to EcR more severely than hormone binding to the heterodimer, indicating that to some extent heterodimerization compensates for the deleterious effect of certain mutations. Different effects of the same point mutations on ligand binding to EcR and EcR/USP (R511, A612, L615, I617, T619, N626) indicate that the ligand-binding pocket is modified by heterodimerization.  相似文献   

10.
Family C G-protein coupled receptors (GPCRs) consist of the metabotropic glutamate receptors (mGluRs), the calcium-sensing receptor (CaSR), the T1R taste receptors, the GABA(B) receptor, the V2R pheromone receptors, and several chemosensory receptors. A common feature of Family C receptors is the presence of an amino acid binding pocket. The objective of this study was to evaluate the ability of the automatic docking program FlexX to predict the favored amino acid ligand at several Family C GPCRs. The docking process was optimized using the crystal structure of mGluR1 and the 20 amino acids were docked into homology models of the CaSR, the 5.24 chemosensory receptor, and the GPRC6A amino acid receptor. Under optimized docking conditions, glutamate was docked in the binding pocket of mGluR1 with a root mean square deviation of 1.56 angstroms from the co-crystallized glutamate structure and was ranked as the best ligand with a significantly better FlexX score compared to all other amino acids. Ligand docking to a homology model of the 5.24 receptor gave generally correct predictions of the favored amino acids, while the results obtained with models of GPRC6A and the CaSR showed that some of the favored amino acids at these receptors were correctly predicted, while a few other top scoring amino acids appeared to be false positives. We conclude that with certain caveats, FlexX can be successfully used to predict preferred ligands at Family C GPCRs.  相似文献   

11.
The results of homology modelling of the human glucorticoid receptor (hGR) ligand-binding domain (LBD) based on the ligand-bound domain of the human estrogen receptor alpha (hERalpha) are reported. It is shown that known hGR ligands which induce the human cytochrome P450 enzyme CYP3A4 are able to fit the putative ligand-binding site of the nuclear hormone receptor and form hydrogen bonds with key amino acid residues within the binding pocket. Quantitative structure-activity relationships (QSARs) have been derived for hGR-mediated CYP3A4 induction which involve certain molecular structural and physicochemical properties of the ligand themselves, yielding good correlations (R=0.96-0.98) with fold induction of CYP3A4 known to be mediated via hGR involvement.  相似文献   

12.
We have shown previously that the octapeptide angiotensin II (Ang II) activates the AT1 receptor through an induced-fit mechanism (Noda, K., Feng, Y. H., Liu, X. P., Saad, Y., Husain, A., and Karnik, S. S. (1996) Biochemistry 35, 16435-16442). In this activation process, interactions between Tyr4 and Phe8 of Ang II with Asn111 and His256 of the AT1 receptor, respectively, are essential for agonism. Here we show that aromaticity, primarily, and size, secondarily, of the Tyr4 side chain are important in activating the receptor. Activation analysis of AT1 receptor position 111 mutants by various Ang II position 4 analogues suggests that an amino-aromatic bonding interaction operates between the residue Asn111 of the AT1 receptor and Tyr4 of Ang II. Degree and potency of AT1 receptor activation by Ang II can be recreated by a reciprocal exchange of aromatic and amide groups between positions 4 and 111 of Ang II and the AT1 receptor, respectively. In several other bonding combinations, set up between Ang II position 4 analogues and receptor mutants, the gain of affinity is not accompanied by gain of function. Activation analysis of position 256 receptor mutants by Ang II position 8 analogues suggests that aromaticity of Phe8 and His256 side chains is crucial for receptor activation; however, a stacked rather than an amino-aromatic interaction appears to operate at this switch locus. Interaction between these residues, unlike the Tyr4:Asn111 interaction, plays an insignificant role in ligand docking.  相似文献   

13.
Based on the identification of residues that determine receptor selectivity of arrestins and the analysis of the evolution in the arrestin family, we introduced 10 mutations of "receptor discriminator" residues in arrestin-3. The recruitment of these mutants to M2 muscarinic (M2R), D1 (D1R) and D2 (D2R) dopamine, and β(2)-adrenergic receptors (β(2)AR) was assessed using bioluminescence resonance energy transfer-based assays in cells. Seven of 10 mutations differentially affected arrestin-3 binding to individual receptors. D260K and Q262P reduced the binding to β(2)AR, much more than to other receptors. The combination D260K/Q262P virtually eliminated β(2)AR binding while preserving the interactions with M2R, D1R, and D2R. Conversely, Y239T enhanced arrestin-3 binding to β(2)AR and reduced the binding to M2R, D1R, and D2R, whereas Q256Y selectively reduced recruitment to D2R. The Y239T/Q256Y combination virtually eliminated the binding to D2R and reduced the binding to β(2)AR and M2R, yielding a mutant with high selectivity for D1R. Eleven of 12 mutations significantly changed the binding to light-activated phosphorhodopsin. Thus, manipulation of key residues on the receptor-binding surface modifies receptor preference, enabling the construction of non-visual arrestins specific for particular receptor subtypes. These findings pave the way to the construction of signaling-biased arrestins targeting the receptor of choice for research or therapeutic purposes.  相似文献   

14.
DNA binding as well as ligand binding by nuclear receptors has been studied extensively. Both binding functions are attributed to isolated domains of which the structure is known. The crystal structure of a complete receptor in complex with its ligand and DNA-response element, however, has been solved only for the peroxisome proliferator-activated receptor γ (PPARγ)-retinoid X receptor α (RXRα) heterodimer. This structure provided the first indication of direct interactions between the DNA-binding domain (DBD) and ligand-binding domain (LBD). In this study, we investigated whether there is a similar interface between the DNA- and ligand-binding domains for the androgen receptor (AR). Despite the structural differences between the AR- and PPARγ-LBD, a combination of in silico modeling and docking pointed out a putative interface between AR-DBD and AR-LBD. The surfaces were subjected to a point mutation analysis, which was inspired by known AR mutations described in androgen insensitivity syndromes and prostate cancer. Surprisingly, AR-LBD mutations D695N, R710A, F754S, and P766A induced a decrease in DNA binding but left ligand binding unaffected, while the DBD-residing mutations K590A, K592A, and E621A lowered the ligand-binding but not the DNA-binding affinity. We therefore propose that these residues are involved in allosteric communications between the AR-DBD and AR-LBD.  相似文献   

15.
Previous studies have established that G-protein-coupled receptors (GPCRs) are composed of independent folding domains. Based on this findings we attempted to rescue the function of clinically relevant missense mutations (R137H, S167L, and R181C) within the N-terminal domain of the V2 vasopressin receptor (V2-R), by coexpressing mutated full-length (Y280C) and C-terminally truncated (E242X) receptor constructs in COS-7 cells. Coimmunoprecipitation and enzyme-linked immunosorbent assay studies demonstrated a specific association of E242X with full-length V2-Rs even in the presence of missense mutations. Systematic analysis of the structural requirements for the observed receptor/fragment association showed that N-terminal fragments containing at least transmembrane regions 1-3 interact with the full-length V2-R. Despite this specific interaction, no functional reconstitution was achieved for mutant V2-Rs following coexpression with E242X and Y280C. However, functional activity of R137H and R181C upon coexpression with E242X was regained by mutational disruption of the extracellular disulfide bond, which is highly conserved among GPCRs. Our data with the V2-R are consistent with a structural model in which class I GPCRs form contact oligomers by lateral interaction rather than by a domain-swapping mechanism.  相似文献   

16.
Nuclear hormone receptors, such as the ecdysone receptor, often display a large amount of induced fit to ligands. The size and shape of the binding pocket in the EcR subunit changes markedly on ligand binding, making modelling methods such as docking extremely challenging. It is, however, possible to generate excellent 3D QSAR models for a given type of ligand, suggesting that the receptor adopts a relatively restricted number of binding site configurations or ‘attractors’. We describe the synthesis, in vitro binding and selected in vivo toxicity data for γ-methylene γ-lactams, a new class of high-affinity ligands for ecdysone receptors from Bovicola ovis (Phthiraptera) and Lucilia cuprina (Diptera). The results of a 3D QSAR study of the binding of methylene lactams to recombinant ecdysone receptor protein suggest that this class of ligands is indeed recognised by a single conformation of the EcR binding pocket.  相似文献   

17.
Post-translational modifications of the extracellular portions of receptors located in the cell membrane can contribute to modulating their biological activity. Using a mutagenesis approach in which single or multiple Tyr-to-Phe, Thr-to-Ala, Ser-to-Ala, and Asn-to-Gln substitutions were made at the appropriate positions, we analyzed the sulfation and glycosylation state of the murine CCR8 chemokine receptor, and the way in which these post-translational modifications affect CCR8 activity. A Y14Y15-to-F14F15 CCR8 mutant was less sulfated than the wild-type receptor. An N8-to-Q8 mutant was less glycosylated than wild-type, and a double T10T12-to-A10A12 mutant showed even less glycosylation. We established a flow cytometric analysis with an Fc-fused form of mouse CCL1 to determine precisely the ligand-binding activity of these mutants. Single mutants at amino acid positions 8, 10 or 12 bound CCL1-Fc similarly to wild-type CCR8, whereas the F14F15 double mutant was essentially inactive and the A10A12 double mutant showed about 65% of wild-type ligand-binding activity. Calcium flux activity assays were performed with these mutants, yielding results consistent with those from the ligand binding assays. These data indicate that sulfation at specific positions of the N-terminal domain of mouse CCR8 is critical for its biological activity, whereas glycosylation has a minor influence.  相似文献   

18.
In this study the three-dimensional (3-D) model of the ligand-binding domain (V106-P322) of human interleukin-6 receptor (hlL-6 R) was constructed by computer-guided ho-mology modeling technique using the crystal structure of the ligand-binding domain (K52-L251) of human growth hormone receptor (hGHR) as templet. Furthermore, the active binding region of the 3-D model of hlL-6R with the ligand (hlL-6) was predicted. In light of the structural characteristics of the active region, a hydrophobic pocket shielded by two hydrophilic residues (E115 and E505) of the region was identified by a combination of molecular modelling and the site-directed or double-site mutation of the twelve crucial residues in the ligand-binding domain of hIL-6R (V106-P322). We observed and analyzed the effects of these mutants on the spatial conformation of the pocket-like region of hlL-6 R. The results indicated that any site-directed mutation of the five Cys residues (four conservative Cys residues: Cyst 21, Cys132, Cys165, Cys1  相似文献   

19.
The crystal structures of the human androgen receptor (hAR) and human progesterone receptor ligand-binding domains in complex with the same ligand metribolone (R1881) have been determined. Both three-dimensional structures show the typical nuclear receptor fold. The change of two residues in the ligand-binding pocket between the human progesterone receptor and hAR is most likely the source for the specificity of R1881 to the hAR. The structural implications of the 14 known mutations in the ligand-binding pocket of the hAR ligand-binding domains associated with either prostate cancer or the partial or complete androgen receptor insensitivity syndrome were analyzed. The effects of most of these mutants could be explained on the basis of the crystal structure.  相似文献   

20.
Sequence differences between members of the mouse olfac-tory receptor MOR42 subfamily (MOR42-3 and MOR42-1) are likely to be the basis for variation in ligand binding preference among these receptors. We investigated the specificity of MOR42-3 for a variety of dicarboxylic acids. We used site-directed mutagenesis, guided by homology modeling and ligand docking studies, to locate functionally important residues. Receptors were expressed in Xenopus oocytes and assayed using high throughput electrophysiology. The importance of the Val-113 residue, located deep within the receptor, was analyzed in the context of interhelical interactions. We also screened additional residues predicted to be involved in ligand binding site, based on comparison of ortholog/paralog pairs from the mouse and human olfactory receptor genomes (Man, O., Gilad, Y., and Lancet, D. (2004) Protein Sci. 13, 240-254). A network of 8 residues in transmembrane domains III, V, and VI was identified. These residues form part of the ligand binding pocket of MOR42-3. C12 dicarboxylic acid did not activate the receptor in our functional assay, yet our docking simulations predicted its binding site in MOR42-3. Binding without activation implied that C12 dicarboxylic acid might act as an antagonist. In our functional assay, C12 dicarboxylic acid did indeed act as an antagonist of MOR42-3, in agreement with molecular docking studies. Our results demonstrate a powerful approach based on the synergy between computational predictions and physiological assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号