首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
2.
Osteoclastogenesis is commonly associated with various age-related diseases, including cancer. A member of the tumor necrosis factor superfamily, receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL), has been shown to play a critical role in osteoclast formation and bone resorption. Thus, agents that suppress RANKL signaling have a potential to suppress bone loss. In this report, we investigated the effect of 1'-acetoxychavicol acetate (ACA), a component of Alpina galanga, on RANKL signaling and consequent osteoclastogenesis in RAW 264.7 cells, a murine monocytic cell line. Treatment of these cells with RANKL activated NF-kappaB, and coexposure of the cells to ACA completely suppressed RANKL-induced NF-kappaB activation in a time- and concentration-dependent manner. The suppression of NF-kappaB by ACA was mediated through suppression of RANKL-induced activation of IkappaBalpha kinase, IkappaBalpha phosphorylation, and IkappaBalpha degradation. Furthermore, incubation of monocytic cells with RANKL induced osteoclastogenesis, and ACA suppressed it. Inhibition of osteoclastogenesis was maximal when cells were simultaneously exposed to ACA and RANKL and minimum when ACA was added 2 days after RANKL. ACA also inhibited the osteoclastogenesis induced by human breast cancer MCF-7 cells, multiple myeloma MM1 cells, and head and neck squamous cell carcinoma LICR-LON-HN5 cells. These results indicate that ACA is an effective blocker of RANKL-induced NF-kappaB activation and of osteoclastogenesis induced by RANKL and tumor cells, suggesting its potential as a therapeutic agent for osteoporosis and cancer-associated bone loss.  相似文献   

3.
Immunoreceptor tyrosine-based activation motif (ITAM) signaling mediated by DAP12 or Fcepsilon receptor Igamma chain (FcRgamma) have been shown to be critical for osteoclast differentiation and maturation under normal physiological conditions. Their function in pathological conditions is unknown. We studied the role of ITAM signaling during rapid bone remodeling induced by acute estrogen-deficiency in wild-type (WT), DAP12-deficient (DAP12-/-), FcRgamma-deficient (FcRgamma-/-) and double-deficient (DAP12-/-FcRgamma-/-) mice. Six weeks after ovariectomy (OVX), DAP12-/-FcRgamma-/- mice showed resistance to lumbar vertebral body (LVB) trabecular bone loss, while WT, DAP12-/- and FcRgamma-/- mice had significant LVB bone loss. In contrast, all ITAM adapter-deficient mice responded to OVX with bone loss in both femur and tibia of approximately 40%, relative to basal bone volumes. Only WT mice developed significant cortical bone loss after OVX. In vitro studies showed microenvironmental changes induced by OVX are indispensable for enhanced osteoclast formation and function. Cytokine changes, including TGFbeta and TNFalpha, were able to induce osteoclastogenesis independent of RANKL in BMMs from WT but not DAP12-/- and DAP12-/-FcRgamma-/- mice. FSH stimulated RANKL-induced osteoclast differentiation from BMMs in WT, but not DAP12-/- and DAP12-/-FcRgamma-/- mice. Our study demonstrates that although ITAM adapter signaling is critical for normal bone remodeling, estrogen-deficiency induces an ITAM adapter-independent bypass mechanism allowing for enhanced osteoclastogenesis and activation in specific bony microenvironments.  相似文献   

4.
Enhanced osteoclastogenesis is one of the major causes of age-related bone loss. Aging is accompanied by accumulation of advanced oxidation protein products (AOPPs). However, whether AOPPs accumulation contributing to the osteoclastogenesis with aging remains unclear. Here, we showed that AOPPs accumulation was associated with the enhanced osteoclastogenesis and deterioration of bone microstructure in aged mice. In vitro, AOPPs directly induced osteoclastogenesis by interaction with receptor activator of nuclear factor κ B (RANK) and the receptor for advanced glycation end products (RAGE) in the primary bone marrow monocytes. Bindings of AOPPs to RANK and RAGE were able to activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, trigger generation of reactive oxygen species, then induce phosphorylation of mitogen-activated protein kinases and c-fos, upregulation of the nuclear factor of activated T cell c1, eventually induce bone marrow monocytes to differentiate into mature osteoclasts. Chronic exposure to AOPPs enhanced osteoclastogenesis and bone loss in mice, which could be alleviated by NADPH oxidase inhibitor apocynin. Local injection of AOPPs into subperiosteal area induced bone resorption at the site of administration, which was similar to the effect of RANK ligand. Together, these results suggested that AOPPs could serve as a novel regulator of osteoclastogenesis and AOPPs accumulation might play an important role in the development of age-related bone loss.Subject terms: Senescence, Osteoporosis  相似文献   

5.
6.
Postmenopausal women undergo rapid bone loss, which caused by the accelerated osteoclastic bone resorption. Receptor activator of nuclear factor kappa-B ligand (RANKL) plays critical and essential roles on varied stages of osteoclastogenesis. Oleanolic acid (OA), a naturally derived small compound, has been found suppress osteoclastogenesis in early stage of bone marrow macrophages (BMMs). However, whether OA also regulates the late stage of osteoclastogenesis remains unclear. Here, the regulatory effect of OA on the late stage of osteoclastogenesis was investigated in vitro using RANKL-pretreated BMMs and in vivo using osteoprotegerin (OPG) knockout mice. Our in vitro studies demonstrate that OA inhibits the late stage of osteoclastogenesis from RANKL-pretreated BMMs. For in vivo animal investigation, OA attenuates the bone loss phenotypes in OPG-knockout mice by decreasing the densities of osteoclast, which are in consistent with the finding with in vitro osteoclastogenesis. Mechanistic investigations found that OA largely inhibit the activity of c-Fos and Nuclear factor of activated T-cells c1 (NFATc1) with RANKL-pretreated BMMs and OPG-knockout mice. Furthermore, OA suppresses the activities of osteoclast genes, such as Tartrate resistant acid phosphatase (TRAP), CathepsinK (Ctsk), and Matrix metalloproteinase 9 (MMP9). Taken together these findings, they have not only defined an inhibitory effect of OA in the late stage of osteoclastogenesis but have also gained new molecular mechanisms underlying the process of osteoclast formation.  相似文献   

7.
alpha-Melanocyte-stimulating hormone (alpha-MSH), a 13-amino acid peptide produced in the brain and pituitary gland, is a regulator of appetite and body weight, and its production is regulated by leptin, a factor that affects bone mass when administered centrally. alpha-MSH acts via melanocortin receptors. Humans deficient in melanocortin receptor 4 (MC4-R) have increased bone mass, and MC4-R has been identified in an osteoblast-like cell line. Thus alpha-MSH may act directly on the skeleton, a question addressed by the present studies. In primary cultures of osteoblasts and chondrocytes, alpha-MSH dose dependently (>or=10(-9) M) stimulated cell proliferation. In bone marrow cultures, alpha-MSH (>10(-9) M) stimulated osteoclastogenesis. Systemic administration of alpha-MSH to mice (20 injections of 4.5 microg/day) decreased the trabecular bone volume in the proximal tibiae from 19.5 +/- 1.8 to 15.2 +/- 1.4% (P = 0.03) and reduced trabecular number (P = 0.001). Radiographic indexes of trabecular bone, assessed by phase-contrast X-ray imaging, confirmed the bone loss. It is concluded that alpha-MSH acts directly on bone, increasing bone turnover, and, when administered systemically, it decreases bone volume. The latter result may also be contributed to by alpha-MSH effects elsewhere, such as the adipocyte, pancreatic beta-cell, or central nervous system.  相似文献   

8.
Bone loss (osteopenia) is a common complication in human solid tumour. In addition, after surgical treatment of gynaecological tumour, osteoporosis often occurs due to the withdrawal of oestrogen. The major characteristic of osteoporosis is the low bone mass with micro-architectural deteriorated bone tissue. And the main cause is the overactivation of osteoclastogenesis, which is one of the most important therapeutic targets. Inflammation could induce the interaction of RANKL/RANK, which is the promoter of osteoclastogenesis. Triptolide is derived from the traditional Chinese herb lei gong teng, presented multiple biological effects, including anti-cancer, anti-inflammation and immunosuppression. We hypothesized that triptolide could inhibits osteoclastogenesis by suppressing inflammation activation. In this study, we confirmed that triptolide could suppress RANKL-induced osteoclastogenesis in bone marrow mononuclear cells (BMMCs) and RAW264.7 cells and inhibited the osteoclast bone resorption functions. PI3K-AKT-NFATc1 pathway is one of the most important downstream pathways of RANKL-induced osteogenesis. The experiments in vitro indicated that triptolide suppresses the activation of PI3K-AKT-NFATc1 pathway and the target point located at the upstream of AKT because both NFATc1 overexpression and AKT phosphorylation could ameliorate the triptolide suppression effects. The expression of MDM2 was elevated, which demonstrated the MDM-p53-induced cell death might contribute to the osteoclastogenesis suppression. Ovariectomy-induced bone loss and inflammation activation were also found to be ameliorated in the experiments in vivo. In summary, the new effect of anti-cancer drug triptolide was demonstrated to be anti-osteoclastogenesis, and we demonstrated triptolide might be a promising therapy for bone loss caused by tumour.  相似文献   

9.
Experimental evidences indicate that the TNF family member TNF-related apoptosis inducing ligand (TRAIL) might be involved in modulating osteoclastic differentiation. The ability of recombinant soluble TRAIL to affect bone density in vivo was evaluated by using 4-week-old mice subcutaneously (s.c.) injected with TRAIL for 8 days. TRAIL injection induced a significant increase of tibia trabecular thickness and total bone mass in 4-week-old mice, accompanied by a significant decrease of TRAP serum levels, without modulation of osteocalcin and osteoprotegerin (OPG). Parallel experiments performed in vitro showed that inhibition of osteoclastic differentiation, induced by treatment of human peripheral blood osteoclast precursors with TRAIL, was associated to inhibition of receptor activator of nuclear factor kappa B ligand (RANKL)-induced accumulation of p27(Kip1). The potential role of p27(Kip1) pathway in mediating the anti-osteoclastic activity of TRAIL was further suggested by in vitro gene knock-down experiments performed in osteoclast precursor cultures. Taken together, our data strongly suggest that recombinant TRAIL inhibits osteoclastogenesis by inducing the ubiquitin-mediated degradation of p27(Kip1).  相似文献   

10.
11.
12.
Little is known about the effects of mechanical forces on osteoclastogenesis by bone marrow macrophages (BMMs) in the absence of mechanosensitive cells, including osteoblasts and fibroblasts. In this study, we examined the effects of mechanical force on osteoclastogenesis by applying centrifugal force to BMMs using a horizontal microplate rotor. Our findings, as measured by an in vitro model system, show that tumor necrosis factor (TNF)‐α is capable of inducing osteoclast differentiation from BMMs and bone resorption in the presence of macrophage‐colony stimulating factor (M‐CSF) and is further facilitated by receptor activator of nuclear factor‐kappaB (NF‐κB) ligand (RANKL). Application of force to BMMs accelerated TNF‐α‐induced osteoclastogenesis; this was inhibited either by anti‐TNF‐α or anti‐TNF‐α receptor but not by OPG. TNF‐α also increased c‐Fms expression at both mRNA and protein levels in BMMs. An anti‐c‐Fms antibody completely inhibited osteoclast differentiation and bone resorption induced by TNF‐α but partially blocked osteoclastogenesis stimulated in combination with RANKL. These results suggest that TNF‐α (in the presence of M‐CSF) is capable of inducing osteoclastogenesis from BMMs, and that osteoclastogenesis is significantly stimulated by force application through the activation of c‐Fms‐mediated signaling. Overall, the present study reveals the facilitating effect of mechanical force on osteoclastic differentiation from BMMs without the addition of mechanosensitive cells. J. Cell. Biochem. 111: 1260–1269, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
During embryogenesis the bone tissue of craniomandibular joint (CMJ) is formed through two pathways: intramembranous ossification and endochondral ossification. The development process is under the control of regulatory factors.The osteoprotegerin (OPG) and the receptor activator of nuclear factor (NF)-kappaB ligand are key regulators of osteoclastogenesis. The aim of this study is the localization of OPG and RANKL mRNA and protein in the foetal CMJ by immunohistochemistry (IHC) and in situ hybridization (ISH). The main results were: OPG and RANKL mRNA and protein were co-localized in the same cell types; OPG and RANKL were specially immunolocated in osteogenic cells; immunolabeling was often seen in the nucleus and cytoplasm of otherwise negative hypertrophic chondrocytes; IHC and ISH labeling decreased from proliferative to hypertrophic chondrocytes; early osteocytes showed dual protein expression and some of the mature osteocytes were ISH-negative; periosteal osteoclasts and chondroclasts were mostly stained by IHC and variably labeled by ISH; the new bone matrix and trabecular borders showed intense immunolabeling. The co-expression of OPG and RANKL in the same bone cell types confirms their strictly coupled action in the regulation of bone metabolism in the CMJ development and their extracellular presence in the new bone matrix and trabecular borders suggests a local regulatory role.  相似文献   

14.
In this review, we discuss the effect of increased and decreased loading and nutrition deficiency on muscle and bone mass and strength (and bone length and architecture) independently and combined. Both exercise and nutrition are integral components of the mechanostat model but both have distinctly different roles. Mechanical strain imparted by muscle action is responsible for the development of the external size and shape of the bone and subsequently the bone strength. In contrast, immobilization during growth results in reduced growth in bone length and a loss of bone strength due to large losses in bone mass (a result of endosteal resorption in cortical bone and trabecular thinning) and changes in geometry (bone shafts do not develop their characteristic shape but rather develop a rounded default shape). The use of surrogate measures for peak muscle forces acting on bone (muscle strength, size, or mass) limits our ability to confirm a cause-and-effect relationship between peak muscle force acting on bone and changes in bone strength. However, the examples presented in this review support the notion that under adequate nutrition, exercise has the potential to increase peak muscle forces acting on bone and thus can lead to a proportional increase in bone strength. In contrast, nutrition alone does not influence muscle or bone in a dose-dependent manner. Muscle and bone are only influenced when there is nutritional deficiency--and in this case the effect is profound. Similar to immobilization, the immediate effect of malnutrition is a reduction in longitudinal growth. More specifically, protein and energy malnutrition results in massive bone loss due to endosteal resorption in cortical bone and trabecular thinning. Unlike loading however, there is indirect evidence that severe malnutrition when associated with menstrual dysfunction can shift the mechanostat set point upward, thus leading to less bone accrual for a given amount of bone strain.  相似文献   

15.
Considering the high rate of osteoclast-related diseases worldwide, research targeting osteoclast formation/function is crucial. In vitro, we demonstrated that chitooligosaccharide (CS) dramatically inhibited osteoclastogenesis as well as osteoclast function dose-dependently. CS suppressed osteoclast-specific genes expression during osteoclastogenesis. Furthermore, we found that CS attenuated receptor activator of nuclear factor kappa B ligand (RANKL)-mediated mitogen-activated protein kinase (MAPK) pathway involving p38, erk1/2, and jnk, leading to the reduced expression of c-fos and nuclear factor of activated T cells c1 (NFATc1) during osteoclast differentiation. In vivo, we found CS protected rats from periodontitis-induced alveolar bone loss by micro-computerized tomography and histological analysis. Overall, CS inhibited RANKL-induced osteoclastogenesis and ligature-induced rat periodontitis model, probably by suppressing the MAPK/c-fos/NFATc1 signaling pathway. Therefore, CS may be a safe and promising treatment for osteoclast-related diseases.  相似文献   

16.
Regulation of osteoclast differentiation is an aspect central to the understanding of the pathogenesis and the treatment of bone diseases such as autoimmune arthritis and osteoporosis. In fact, excessive signaling by RANKL (receptor activator of nuclear factor kappaB ligand), a member of the tumor necrosis factor (TNF) family essential for osteoclastogenesis, may contribute to such pathological conditions. Here we summarize our current work on the negative regulation of osteoclastogenesis by unique signaling crosstalk between RANKL and interferons (IFNs). First, activated T cells maintain bone homeostasis by counterbalancing the action of RANKL through production of IFN-gamma. This cytokine induces rapid degradation of the RANK (receptor activator of nuclear factor kappaB) adapter protein TRAF6 (TNF-receptor-associated factor 6), resulting in strong inhibition of the RANKL-induced activation of NF-kappaB and JNK (c-Jun N-terminal kinase). Second, RANKL induces the IFN-beta gene but not IFN-alpha genes, in osteoclast precursor cells, and that IFN-beta strongly inhibits the osteoclast differentiation by interfering with the RANKL-induced expression of c-Fos. The series of in vivo experiments revealed that these two distinct IFN-mediated regulatory mechanisms are both important to maintain homeostasis of bone resorption. Collectively, these studies revealed novel aspects of the two types of IFN, beyond their original roles in the immune response, and may offer a molecular basis for the treatment of bone diseases.  相似文献   

17.
The differentiation of bone-resorbing osteoclasts is induced by RANKL signaling, and leads to the activation of NF-κB via TRAF6 activation. TRAF family member-associated NF-κB activator (TANK) acts as a negative regulator of Toll-like receptors (TLRs) and B-cell receptor (BCR) signaling by inhibiting TRAF6 activation. Tank(-/-) mice spontaneously develop autoimmune glomerular nephritis in an IL-6-dependent manner. Despite its importance in the TCRs and BCR-activated TRAF6 inhibition, the involvement of TANK in RANKL signaling is poorly understood. Here, we report that TANK is a negative regulator of osteoclast differentiation. The expression levels of TANK mRNA and protein were up-regulated during RANKL-induced osteoclastogenesis, and overexpression of TANK in vitro led to a decrease in osteoclast formation. The in vitro osteoclastogenesis of Tank(-/-) cells was significantly increased, accompanied by increased ubiquitination of TRAF6 and enhanced canonical NF-κB activation in response to RANKL stimulation. Tank(-/-) mice showed severe trabecular bone loss, but increased cortical bone mineral density, because of enhanced bone erosion and formation. TANK mRNA expression was induced during osteoblast differentiation and Tank(-/-) osteoblasts exhibited enhaced NF-κB activation, IL-11 expression, and bone nodule formation than wild-type control cells. Finally, wild-type mice transplanted with bone marrow cells from Tank(-/-) mice showed trabecular bone loss analogous to that in Tank(-/-) mice. These findings demonstrate that TANK is critical for osteoclastogenesis by regulating NF-κB, and is also important for proper bone remodeling.  相似文献   

18.
19.
20.
Receptor activator of NF-κB (RANK) plays a critical role in osteoclastogenesis, an essential process for the initiation of bone remodeling to maintain healthy bone mass and structure. Although the signaling and function of RANK have been investigated extensively, much less is known about the negative regulatory mechanisms of its signaling. We demonstrate in this paper that RANK trafficking, signaling, and function are regulated by VPS35, a major component of the retromer essential for selective endosome to Golgi retrieval of membrane proteins. VPS35 loss of function altered RANK ligand (RANKL)–induced RANK distribution, enhanced RANKL sensitivity, sustained RANKL signaling, and increased hyperresorptive osteoclast (OC) formation. Hemizygous deletion of the Vps35 gene in mice promoted hyperresorptive osteoclastogenesis, decreased bone formation, and caused a subsequent osteoporotic deficit, including decreased trabecular bone volumes and reduced trabecular thickness and density in long bones. These results indicate that VPS35 critically deregulates RANK signaling, thus restraining increased formation of hyperresorptive OCs and preventing osteoporotic deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号