首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria are associated with various radiation responses, including adaptive responses, mitophagy, the bystander effect, genomic instability, and apoptosis. We recently identified a unique radiation response in the mitochondria of human cells exposed to low-dose long-term fractionated radiation (FR). Such repeated radiation exposure inflicts chronic oxidative stresses on irradiated cells via the continuous release of mitochondrial reactive oxygen species (ROS) and decrease in cellular levels of the antioxidant glutathione. ROS-induced oxidative mitochondrial DNA (mtDNA) damage generates mutations upon DNA replication. Therefore, mtDNA mutation and dysfunction can be used as markers to assess the effects of low-dose radiation. In this study, we present an overview of the link between mitochondrial ROS and cell cycle perturbation associated with the genomic instability of low-dose irradiated cells. Excess mitochondrial ROS perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of protein phosphatase 2A after low-dose long-term FR. The resulting abnormal nuclear accumulation of cyclin D1 induces genomic instability in low-dose irradiated cells.  相似文献   

2.
Radiation-induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear; however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation-induced genomic instability we have evaluated the mitochondrial subproteome and performed quantitative mass spectrometry analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and upregulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype, and evaluation of gene and microRNA expression suggests that epigenetics play a role in the phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under suboptimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.  相似文献   

3.
The dynamics of radiation-induced oxidative and nitrative stress, the source of oxygen and nitrogen reactive species in cancer cell line K562 and the role of mitochondria in these processes have been studied. The study was performed using K562 leukemia cell cultures. Intracellular concentration of reactive oxygen species (ROS), nitrogen oxide, and the mitochondrial potential were analyzed after 15, 30 min, 1, 4, 8, 12, 24, and 48 h after irradiation by X-rays at a dose of 4 and 12 Gy. Radiation-induced generation of ROS in K562 cells has two time peaks, the first peak was recorded after 30 min and the second 24 h after exposure to X-rays. Mitochondria are responsible for the increase of the ROS concentration in the period of 12-48 h after irradiation. The increase in ROS concentrations is accompanied by the increase of the mitochondrial potential. The intracellular concentration of nitric oxide begins to grow 8 h after exposure. The increase in the mitochondria-dependent ROS production is accompanied by the increase in the intracellular concentration of nitric oxide.  相似文献   

4.
Arsenic is a well-known human carcinogen that affects millions of people worldwide, but the underlying mechanisms of carcinogenesis are unclear. Several epidemiological studies have suggested increased prostate cancer incidence and mortality due to exposure to arsenic. Due to lack of an animal model of arsenic-induced carcinogenesis, we used a prostate epithelial cell culture model to identify a role for mitochondria in arsenic-induced prostate cancer. Mitochondrial morphology and membrane potential was impacted within a few hours of arsenic exposure of non-neoplastic prostate epithelial cells. Chronic arsenic treatment induced mutations in mitochondrial genes and altered mitochondrial functions. Human non-neoplastic prostate epithelial cells continuously cultured for seven months in the presence of 5 µM arsenite showed tumorigenic properties in vitro and induced tumors in SCID mice, which indicated transformation of these cells. Protein and mRNA expression of subunits of mtOXPHOS complex I were decreased in arsenic-transformed cells. Alterations in complex I, a main site for reactive oxygen species (ROS) production as well as increased expression of ROS-producing NOX4 in arsenic-transformed cells suggested a role of oxidative stress in tumorigenic transformation of prostate epithelial cells. Whole genome cGH array analyses of arsenic-transformed prostate cells identified extensive genomic instability. Our study revealed mitochondrial dysfunction induced oxidative stress and decreased expression of p53 in arsenic-transformed cells as an underlying mechanism of the mitochondrial and nuclear genomic instability. These studies suggest that early changes in mitochondrial functions are sustained during prolong arsenic exposure. Overall, our study provides evidence that arsenic disruption of mitochondrial function is an early and key step in tumorigenic transformation of prostate epithelial cells.  相似文献   

5.
Many pathophysiological processes are associated with oxidative stress and progressive cell death. Oxidative stress is an apoptotic inducer that is known to cause rapid cell death. Here we show that a brief oxidative insult (5-min exposure to 400 microM H(2)O(2)), although it did not kill H9c2 rat ventricular cells during the exposure, triggered an intracellular death cascade leading to delayed time-dependent cell death starting from 1 h after the insult had been withdrawn, and this post-H(2)O(2) cell death cumulated gradually, reaching a maximum level 8 h after H(2)O(2) withdrawal. By comparison, sustained exposure to H(2)O(2) caused complete cell death within a narrow time frame (2 h). The time-dependent post-H(2)O(2) cell death was typical of apoptosis, both morphologically (cell shrinkage and nuclear condensation) and biochemically (DNA fragmentation, extracellular exposure of phosphatidylserines, and caspase-3 activation). A dichlorofluorescein fluorescent signal showed a time-dependent endogenous increase of reactive oxygen species (ROS) production, which was almost abolished by inhibition of the mitochondrial electron transport chain. Application of antioxidants (vitamin E or DTT) before H(2)O(2) addition or after H(2)O(2) withdrawal prevented the H(2)O(2)-triggered progressive ROS production and apoptosis. Sequential appearance of events associated with activation of the mitochondrial death pathway was found, including progressive dissipation of mitochondrial membrane potential, cytochrome c release, and late activation of caspase-3. In conclusion, transient oxidative stress triggers an intrinsic program leading to self-sustained apoptosis in H9c2 cells via cumulative production of mitochondrial ROS and subsequent activation of the mitochondrial death pathway. This pattern of apoptosis may contribute to the progressive and long-lasting cell loss in some degenerative diseases.  相似文献   

6.
Coenzyme Q10 (CoQ10) acts by scavenging reactive oxygen species to protect neuronal cells against oxidative stress in neurodegenerative diseases. The present study was designed to examine whether CoQ10 was capable of protecting astrocytes from reactive oxygen species (ROS) mediated damage. For this purpose, ultraviolet B (UVB) irradiation was used as a tool to induce ROS stress to cultured astrocytes. The cells were treated with 10 and 25 μg/ml of CoQ10 for 3 or 24 h prior to the cells being exposed to UVB irradiation and maintained for 24 h post UVB exposure. Cell viability was assessed by MTT conversion assay. Mitochondrial respiration was assessed by respirometer. While superoxide production and mitochondrial membrane potential were measured using fluorescent probes, levels of cytochrome C (cyto-c), cleaved caspase-9, and caspase-8 were detected using Western blotting and/or immunocytochemistry. The results showed that UVB irradiation decreased cell viability and this damaging effect was associated with superoxide accumulation, mitochondrial membrane potential hyperpolarization, mitochondrial respiration suppression, cyto-c release, and the activation of both caspase-9 and -8. Treatment with CoQ10 at two different concentrations started 24 h before UVB exposure significantly increased the cell viability. The protective effect of CoQ10 was associated with reduction in superoxide, normalization of mitochondrial membrane potential, improvement of mitochondrial respiration, inhibition of cyto-c release, suppression of caspase-9. Furthermore, CoQ10 enhanced mitochondrial biogenesis. It is concluded that CoQ10 may protect astrocytes through suppression of oxidative stress, prevention of mitochondrial dysfunction, blockade of mitochondria-mediated cell death pathway, and enhancement of mitochondrial biogenesis.  相似文献   

7.
Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.  相似文献   

8.
Mitochondrial dysfunction and oxidative stress have been implicated in cellular senescence, apoptosis, aging and aging-associated pathologies. Telomere shortening and genomic instability have also been associated with replicative senescence, aging and cancer. Here we show that mitochondrial dysfunction leads to telomere attrition, telomere loss, and chromosome fusion and breakage, accompanied by apoptosis. An antioxidant prevented telomere loss and genomic instability in cells with dysfunctional mitochondria, suggesting that reactive oxygen species are mediators linking mitochondrial dysfunction and genomic instability. Further, nuclear transfer protected genomes from telomere dysfunction and promoted cell survival by reconstitution with functional mitochondria. This work links mitochondrial dysfunction and genomic instability and may provide new therapeutic strategies to combat certain mitochondrial and aging-associated pathologies.  相似文献   

9.
10.
Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to (56)Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/μm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET (56)Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in (56)Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after (56)Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation.  相似文献   

11.
A number of phenotypes persist in the progeny of irradiated cells for many generations including delayed reproductive death, cell transformation, genomic instability, and mutations. It appears likely that persistent phenotypes are inherited by an epigenetic mechanism, although very little is known about the nature of such a mechanism or how it is established. One hypothesis is that radiation causes a heritable increase in oxy-radical activity. In the present study, intracellular levels of reactive oxygen species (ROS) in human lymphoblast clones derived from individually X-irradiated cells were monitored for about 55 generations after exposure. A number of clones derived from irradiated cells had an increase in dichlorofluorescein (DCF) fluorescence at various times. Cells with abrogated TP53 expression had a decreased oxidant response. Flow cytometry analysis of clones with increased fluorescence did not detect increases in the sub-G(1) fraction or decreased cell viability compared to nonirradiated clones, indicating that increased levels of apoptosis and cell death were not present. The oxidative stress response protein heme oxygenase 1 (HO1) was induced in some cultures derived from X-irradiated cells but not in cultures derived from unirradiated cells. The expression of the dual specificity mitogen-activated protein (MAP) kinase phosphatase (MPK1/CL100), which is inducible by oxidative stress and has a role in modulating ERK signaling pathways, was also increased in the progeny of some irradiated cells. Finally, there was an increase in the phosphorylated tyrosine content of a prominent protein band of about 45 kDa. These results support the hypothesis that increased oxy-radical activity is a persistent effect in X-irradiated mammalian cells and further suggest that this may lead to changes in the expression of proteins involved in signal transduction.  相似文献   

12.
The cellular mechanisms that may underlie the death of dopaminergic neurons in Parkinson's disease are ubiquitin-proteasomal system (UPS) impairment, mitochondrial dysfunction, and oxidative stress. The goal of this work was to elucidate the correlation between mitochondrial dysfunction and UPS impairment, focusing on the role of oxidative stress. Our data revealed that mitochondria-DNA-depleted cells (rho0) are compromised at the mitochondrial and UPS levels and also show an alteration of the oxidative status. In parental cells (rho+), MPP(+) induced a clear inhibition of complex I activity, as well as an increase in ubiquitinylated protein levels, which was not observed in cells treated with lactacystin. Moreover, MPP(+) induced a decreased in the 20S chymotrypsin-like and peptidyl-glutamyl peptide hydrolytic-like proteolytic activities after 24 h of exposure. ROS production was increased in rho+ cells treated with MPP(+) or lactacystin, at early treatment periods. MPP(+) induced an increase in carbonyl group formation in rho+ cells. The results suggest that a mitochondrial alteration leads to an imbalance in the cellular oxidative status, inducing a proteasomal deregulation, which may exacerbate protein aggregation, and consequently degenerative events.  相似文献   

13.
Mitochondrial dysfunction and oxidative stress are known to occur following acute seizure activity but their contribution during epileptogenesis is largely unknown. The goal of this study was to determine the extent of mitochondrial oxidative stress, changes to redox status, and mitochondrial DNA (mtDNA) damage during epileptogenesis in the lithium-pilocarpine model of temporal lobe epilepsy. Mitochondrial oxidative stress, changes in tissue and mitochondrial redox status, and mtDNA damage were assessed in the hippocampus and neocortex of Sprague-Dawley rats at time points (24h to 3months) following lithium-pilocarpine administration. A time-dependent increase in mitochondrial hydrogen peroxide (H(2)O(2)) production coincident with increased mtDNA lesion frequency in the hippocampus was observed during epileptogenesis. Acute increases (24-48h) in H(2)O(2) production and mtDNA lesion frequency were dependent on the severity of convulsive seizure activity during initial status epilepticus. Tissue levels of GSH, GSH/GSSG, coenzyme A (CoASH), and CoASH/CoASSG were persistently impaired at all measured time points throughout epileptogenesis, that is, acutely (24-48h), during the 'latent period' (48h to 7days), and chronic epilepsy (21days to 3months). Together with our previous work, these results demonstrate the model independence of mitochondrial oxidative stress, genomic instability, and persistent impairment of mitochondrial specific redox status during epileptogenesis. Lasting impairment of mitochondrial and tissue redox status during the latent period, in addition to the acute and chronic phases of epileptogenesis, suggests that redox-dependent processes may contribute to the progression of epileptogenesis in experimental temporal lobe epilepsy.  相似文献   

14.
Mitochondria play a key role in maintaining cellular homeostasis during stress responses, and mitochondrial dysfunction contributes to carcinogenesis, aging, and neurologic disease. We here investigated ionizing radiation (IR)-induced mitochondrial damage in human neural progenitor stem cells (NSCs), their differentiated counterparts and human normal fibroblasts. Long-term fractionated radiation (FR) with low doses of X-rays for 31 d enhanced mitochondrial activity as evident by elevated mitochondrial membrane potential (ΔΨm) and mitochondrial complex IV (cytochrome c oxidase) activity to fill the energy demands for the chronic DNA damage response in differentiated cells. Subsequent reduction of the antioxidant glutathione via continuous activation of mitochondrial oxidative phosphorylation caused oxidative stress and genomic instability in differentiated cells exposed to long-term FR. In contrast, long-term FR had no effect on the mitochondrial activity in NSCs. This cell type showed efficient DNA repair, no mitochondrial damage, and resistance to long-term FR. After high doses of acute single radiation (SR) (> 5 Gy), cell cycle arrest at the G2 phase was observed in NSCs and human fibroblasts. Under this condition, increase in mitochondria mass, mitochondrial DNA, and intracellular reactive oxygen species (ROS) levels were observed in the absence of enhanced mitochondrial activity. Consequently, cellular senescence was induced by high doses of SR in differentiated cells.

In conclusion, we demonstrated that mitochondrial radiation responses differ according to the extent of DNA damage, duration of radiation exposure, and cell differentiation.  相似文献   


15.
Reactive oxygen species (ROS) are important mediators of cellular signal transduction cascades such as proliferation, migration, and apoptosis. Chronic exposure of isolated β-cells to proinflammatory cytokines elevates intracellular oxidative stress leading to the demise of pancreatic β-cells culminating in the onset of diabetes. Although the mitochondrial electron transport chain is felt to be the primary source of ROS, several lines of recent evidence suggest that phagocyte-like NADPH oxidase plays a central role in cytokine-mediated ROS generation and apoptosis of β-cells. However, the precise mechanisms underlying the regulation of NADPH oxidase remain unknown. To address this, insulin-secreting INS 832/13 cells were treated with cytomix (IL-1β, IFN-γ, and TNF-α; 10 ng/ml each) for different time intervals (0-24 h). A significant, time-dependent increase in NADPH oxidase activation/intracellular ROS production, p47(phox) subunit, but not p67(phox) subunit, expression of the phagocyte-like NADPH oxidase were demonstrable under these conditions. Furthermore, siRNA-p47(phox) transfection or exposure of INS 832/13 cells to apocynin, a selective inhibitor of NADPH oxidase, markedly attenuated cytomix-induced ROS generation in these cells. Cytomix-mediated mitochondrial dysfunction in INS 832/13 cells was evident by a significant loss of mitochondrial membrane potential (MMP) and upregulated caspase 3 activity. Cytomix treatment also caused a transient (within 15 min) activation of Rac1, a component of the NADPH oxidase holoenzyme. Furthermore, GGTI-2147 and NSC23766, known Rac1 inhibitors, not only attenuated the cytomix-induced Rac1 activation but also significantly prevented loss of MMP (NSC23766 > GGTI-2147). However, NSC23766 had no effect on cytomix-induced NO generation or caspase 3 activation, suggesting additional regulatory mechanisms might underlie these signaling steps. Together, these findings suggested that Rac1-mediated regulation of phagocyte-like NADPH oxidase contributes to cytokine-mediated mitochondrial dysfunction in the β-cell.  相似文献   

16.
The production of reactive oxygen species (ROS) in mammalian cells is tightly regulated because of their potential to damage macromolecules, including DNA. To investigate possible links between high ROS levels, oxidative DNA damage, and genomic instability in mammalian cells, we established a novel model of chronic oxidative stress by coexpressing the NADPH oxidase human (h) NOX1 gene together with its cofactors NOXO1 and NOXA1. Transfectants of mismatch repair (MMR)-proficient HeLa cells or MMR-defective Msh2(-/-) mouse embryo fibroblasts overexpressing the hNOX1 complex displayed increased intracellular ROS levels. In one HeLa clone in which ROS were particularly elevated, reactive nitrogen species were also increased and nitrated proteins were identified with an anti-3-nitrotyrosine antibody. Overexpression of the hNOX1 complex increased the steady-state levels of DNA 8-oxo-7,8-dihydroguanine and caused a threefold increase in the HPRT mutation rate in HeLa cells. In contrast, additional oxidatively generated damage did not affect the constitutive mutator phenotype of the Msh2(-/-) fibroblasts. Because no significant changes in the expression of several DNA repair enzymes for oxidative DNA damage were identified, we suggest that chronic oxidative stress can saturate the cell's DNA repair capacity and cause significant genomic instability.  相似文献   

17.
6-Hydroxydopamine induces mitochondrial ERK activation   总被引:1,自引:0,他引:1  
Reactive oxygen species (ROS) are implicated in 6-hydroxydopamine (6-OHDA) injury to catecholaminergic neurons; however, the mechanism(s) are unclear. In addition to ROS generated during autoxidation, 6-OHDA may initiate secondary cellular sources of ROS that contribute to toxicity. Using a neuronal cell line, we found that catalytic metalloporphyrin antioxidants conferred protection if added 1 h after exposure to 6-OHDA, whereas the hydrogen peroxide scavenger catalase failed to protect if added more than 15 min after 6-OHDA. There was a temporal correspondence between loss of protection and loss of the ability of the antioxidant to inhibit 6-OHDA-induced ERK phosphorylation. Time course studies of aconitase inactivation, an indicator of intracellular superoxide, and MitoSOX red, a mitochondria targeted ROS indicator, demonstrate early intracellular ROS followed by a delayed phase of mitochondrial ROS production, associated with phosphorylation of a mitochondrial pool of ERK. Furthermore, on initiation of mitochondrial ROS and ERK activation, 6-OHDA-injured cells became refractory to rescue by metalloporphyrin antioxidants. Together with previous studies showing that inhibition of the ERK pathway confers protection from 6-OHDA toxicity, and that phosphorylated ERK accumulates in mitochondria of degenerating human Parkinson's disease neurons, these studies implicate mitochondrial ERK activation in Parkinsonian oxidative neuronal injury.  相似文献   

18.
A "hypermutable" genome is a common characteristic of cancer cells, and it may contribute to the progressive accumulation of mutations required for the development of cancer. It has been reported that mammalian cells surviving exposure to gamma radiation display several highly persistent genomic instability phenotypes which may reflect a hypermutability similar to that seen in cancer. These phenotypes include an increased mutation frequency and a decreased plating efficiency, and they continue to be observed many generations after the radiation exposure. The underlying causes of this genomic instability have not been fully determined. We show here that exposure to gamma radiation and other DNA-damaging treatments induces a similar genomic instability in the yeast Saccharomyces cerevisiae. A dose-dependent increase in intrachromosomal recombination was observed in cultures derived from cells surviving gamma irradiation as many as 50 generations after the exposure. Increased forward mutation frequencies and low colony-forming efficiencies were also observed. Persistently elevated recombination frequencies in haploid cells were dominant after these cells were mated to nonirradiated partners, and the elevated recombination phenotype was also observed after treatment with the DNA-damaging agents ultraviolet light, hydrogen peroxide, and ethyl methanesulfonate. Radiation-induced genomic instability in yeast may represent a convenient model for the hypermutability observed in cancer cells.  相似文献   

19.
Loss of stromal fibroblast caveolin-1 (Cav-1) is a powerful single independent predictor of poor prognosis in human breast cancer patients, and is associated with early tumor recurrence, lymph node metastasis and tamoxifen-resistance. We developed a novel co-culture system to understand the mechanism(s) by which a loss of stromal fibroblast Cav-1 induces a “lethal tumor microenvironment.” Here, we propose a new paradigm to explain the powerful prognostic value of stromal Cav-1. In this model, cancer cells induce oxidative stress in cancer-associated fibroblasts, which then acts as a “metabolic” and “mutagenic” motor to drive tumor-stroma co-evolution, DNA damage and aneuploidy in cancer cells. More specifically, we show that an acute loss of Cav-1 expression leads to mitochondrial dysfunction, oxidative stress and aerobic glycolysis in cancer associated fibroblasts. Also, we propose that defective mitochondria are removed from cancer-associated fibroblasts by autophagy/mitophagy that is induced by oxidative stress. As a consequence, cancer associated fibroblasts provide nutrients (such as lactate) to stimulate mitochondrial biogenesis and oxidative metabolism in adjacent cancer cells (the “Reverse Warburg effect”). We provide evidence that oxidative stress in cancer-associated fibroblasts is sufficient to induce genomic instability in adjacent cancer cells, via a bystander effect, potentially increasing their aggressive behavior. Finally, we directly demonstrate that nitric oxide (NO) over-production, secondary to Cav-1 loss, is the root cause for mitochondrial dysfunction in cancer associated fibroblasts. In support of this notion, treatment with anti-oxidants (such as N-acetyl-cysteine, metformin and quercetin) or NO inhibitors (L-NAME) was sufficient to reverse many of the cancer-associated fibroblast phenotypes that we describe. Thus, cancer cells use “oxidative stress” in adjacent fibroblasts (1) as an “engine” to fuel their own survival via the stromal production of nutrients and (ii) to drive their own mutagenic evolution towards a more aggressive phenotype, by promoting genomic instability. We also present evidence that the “field effect” in cancer biology could also be related to the stromal production of ROS and NO species. eNOS-expressing fibroblasts have the ability to downregulate Cav-1 and induce mitochondrial dysfunction in adjacent fibroblasts that do not express eNOS. As such, the effects of stromal oxidative stress can be laterally propagated, amplified and are effectively “contagious”—spread from cell-to-cell like a virus—creating an “oncogenic/mutagenic” field promoting widespread DNA damage.Key words: caveolin-1, cancer associated fibroblasts, oxidative stress, reactive oxygen species (ROS), mitochondrial dysfunction, autophagy, nitric oxide (NO), DNA damage, aneuploidy, genomic instability, anti-oxidant cancer therapy, the “field effect” in cancer biology  相似文献   

20.
Recent studies have demonstrated that inhibition of the proteasome, an enzyme responsible for the majority of intracellular proteolysis, may contribute to the toxicity associated with oxidative stress. In the present study we demonstrate that exposure to oxidative injury (paraquat, H(2)O(2), FeSO(4)) induces a rapid increase in reactive oxygen species (ROS), loss of mitochondrial membrane potential, inhibition of proteasome activity, and induction of cell death in neural SH-SY5Y cells. Application of proteasome inhibitors (MG115, epoxomycin) mimicked the effects of oxidative stressors on mitochondrial membrane potential and cell viability, and increased vulnerability to oxidative injury. Neural SH-SY5Y cells stably transfected with human HDJ-1, a member of the heat shock protein family, were more resistant to the cytotoxicity associated with oxidative stressors. Cells expressing increased levels of HDJ-1 displayed similar degrees of ROS formation following oxidative stressors, but demonstrated a greater preservation of mitochondrial function and proteasomal activity following oxidative injury. Cells transfected with HDJ-1 were also more resistant to the toxicity associated with proteasome inhibitor application. These data support a possible role for proteasome inhibition in the toxicity of oxidative stress, and suggest heat shock proteins may confer resistance to oxidative stress, by preserving proteasome function and attenuating the toxicity of proteasome inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号