首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calsequestrin (CSQ) is a Ca(2+) storage protein that interacts with triadin (TRN), the ryanodine receptor (RyR), and junctin (JUN) to form a macromolecular tetrameric Ca(2+) signaling complex in the cardiac junctional sarcoplasmic reticulum (SR). Heart-specific overexpression of CSQ in transgenic mice (TG(CSQ)) was associated with heart failure, attenuation of SR Ca(2+) release, and downregulation of associated junctional SR proteins, e.g., TRN. Hence, we tested whether co-overexpression of CSQ and TRN in mouse hearts (TG(CxT)) could be beneficial for impaired intracellular Ca(2+) signaling and contractile function. Indeed, the depressed intracellular Ca(2+) concentration ([Ca](i)) peak amplitude in TG(CSQ) was normalized by co-overexpression in TG(CxT) myocytes. This effect was associated with changes in the expression of cardiac Ca(2+) regulatory proteins. For example, the protein level of the L-type Ca(2+) channel Ca(v)1.2 was higher in TG(CxT) compared with TG(CSQ). Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) expression was reduced in TG(CxT) compared with TG(CSQ), whereas JUN expression and [(3)H]ryanodine binding were lower in both TG(CxT) and TG(CSQ) compared with wild-type hearts. As a result of these expressional changes, the SR Ca(2+) load was higher in both TG(CxT) and TG(CSQ) myocytes. In contrast to the improved cellular Ca(2+), transient co-overexpression of CSQ and TRN resulted in a reduced survival rate, an increased cardiac fibrosis, and a decreased basal contractility in catheterized mice, working heart preparations, and isolated myocytes. Echocardiographic and hemodynamic measurements revealed a depressed cardiac performance after isoproterenol application in TG(CxT) compared with TG(CSQ). Our results suggest that co-overexpression of CSQ and TRN led to a normalization of the SR Ca(2+) release compared with TG(CSQ) mice but a depressed contractile function and survival rate probably due to cardiac fibrosis, a lower SERCA2a expression, and a blunted response to β-adrenergic stimulation. Thus the TRN-to-CSQ ratio is a critical modulator of the SR Ca(2+) signaling.  相似文献   

2.
Calsequestrin (CSQ) is a high capacity Ca(2+)-binding protein present in the lumen of sarcoplasmic reticulum (SR) in striated muscle cells and has been shown to regulate the ryanodine receptor Ca(2+) release channel activity through interaction with other proteins present in the SR. Here we show that overexpression of wild-type CSQ or a CSQ mutant lacking the junction binding region (amino acids 86-191; Delta junc-CSQ) in mouse skeletal C2C12 myotube enhanced caffeine- and voltage-induced Ca(2+) release by increasing the Ca(2+) load in SR, whereas overexpression of a mutant CSQ lacking a Ca(2+) binding, aspartate-rich domain (amino acids 352-367; Delta asp-CSQ) showed the opposite effects. Depletion of SR Ca(2+) by thapsigargin initiated store-operated Ca(2+) entry (SOCE) in C2C12 myotubes. A large component of SOCE was inhibited by overexpression of wild-type CSQ or Delta junc-CSQ, whereas myotubes transfected with Delta asp-CSQ exhibited normal function of SOCE. These results indicate that the aspartate-rich segment of CSQ, under conditions of overexpression, can sustain structural interactions that interfere with the SOCE mechanism. Such retrograde activation mechanisms are possibly taking place at the junctional site of the SR.  相似文献   

3.
Molecular mechanisms underlying Ca(2+) regulation by perinuclear endoplasmic/sarcoplasmic reticulum (ER/SR) cisternae in cardiomyocytes remain obscure. To investigate the mechanisms of changes in cardiac calsequestrin (CSQ2) trafficking on perinuclear Ca(2+) signaling, we manipulated the subcellular distribution of CSQ2 by overexpression of CSQ2-DsRed, which specifically accumulates in the perinuclear rough ER. Adult ventricular myocytes were infected with adenoviruses expressing CSQ2-DsRed, CSQ2-WT, or empty vector. We found that perinuclear enriched CSQ2-DsRed, but not normally distributed CSQ2-WT, enhanced nuclear Ca(2+) transients more potently than cytosolic Ca(2+) transients. Overexpression of CSQ2-DsRed produced more actively propagating Ca(2+) waves from perinuclear regions than did CSQ2-WT. Activities of the SR/ER Ca(2+)-ATPase and ryanodine receptor type 2, but not inositol 1,4,5-trisphosphate receptor type 2, were required for the generation of these perinuclear initiated Ca(2+) waves. In addition, CSQ2-DsRed was more potent than CSQ2-WT in inducing cellular hypertrophy in cultured neonatal cardiomyocytes. Our data demonstrate for the first time that CSQ2 retention in the rough ER/perinuclear region promotes perinuclear Ca(2+) signaling and predisposes to ryanodine receptor type 2-mediated Ca(2+) waves from CSQ2-enriched perinuclear compartments and myocyte hypotrophy. These findings provide new insights into the mechanism of CSQ2 in Ca(2+) homeostasis, suggesting that rough ER-localized Ca(2+) stores can operate independently in raising levels of cytosolic/nucleoplasmic Ca(2+) as a source of Ca(2+) for Ca(2+)-dependent signaling in health and disease.  相似文献   

4.
Cardiac calsequestrin (CSQ) is a protein that traffics to and concentrates inside sarcoplasmic reticulum (SR) terminal cisternae, a protein secretory compartment of uncertain origin. To investigate trafficking of CSQ within standard ER compartments, we expressed CSQ in nonmuscle cell lines and examined its localization by immunofluorescence and its molecular structure from the mass spectrum of total cellular CSQ. In all cells examined, CSQ was a highly phosphorylated protein with a glycan structure predictive of ER-retained proteins: Man9,8GlcNAc2 lacking terminal GlcNAc. Immunostaining was restricted to polymeric ER cisternae. Secretory pathway disruption by brefeldin A and thapsigargin led to altered CSQ glycosylation and phosphorylation consistent with post-ER trafficking. When epitope-tagged forms of CSQ were expressed in the same cells, mannose trimming of CSQ glycans was far more extensive, and C-terminal phosphorylation sites were nearly devoid of phosphate, in complete contrast to the highly phosphorylated wild-type protein that concentrates in all cells tested. Epitope-tagged CSQ also showed a reduced ER staining compared to wild-type protein, with significant staining in juxta-Golgi compartments. Loss of ER retention due to epitope tags or thapsigargin and resultant changes in protein structure or levels of bound Ca(2+) point to CSQ polymerization as an ER/SR retention mechanism.  相似文献   

5.
We have studied the effects of ryanodine and inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) with thapsigargin, on both [Ca(2+)](i) and the sarcoplasmic reticulum (SR) Ca(2+) level during caffeine-induced Ca(2+) release in single smooth muscle cells. Incubation with 10 microM ryanodine did not inhibit the first caffeine-induced [Ca(2+)](i) response, although it abolished the [Ca(2+)](i) response to a second application of caffeine. To assess whether ryanodine was inducing a permanent depletion of the internal Ca(2+) stores, we measured the SR Ca(2+) level with Mag-Fura-2. The magnitude of the caffeine-induced reduction in the SR Ca(2+) level was not augmented by incubating cells with 1 microM ryanodine. Moreover, on removal of caffeine, the SR Ca(2+) levels partially recovered in 61% of the cells due to the activity of thapsigargin-sensitive SERCA pumps. Unexpectedly, 10 microM ryanodine instead of inducing complete depletion of SR Ca(2+) stores markedly reduced the caffeine-induced SR Ca(2+) response. It was necessary to previously inhibit SERCA pumps with thapsigargin for ryanodine to be able to induce caffeine-triggered permanent depletion of SR Ca(2+) stores. These data suggest that the effect of ryanodine on smooth muscle SR Ca(2+) stores was markedly affected by the activity of SERCA pumps. Our data highlight the importance of directly measuring SR Ca(2+) levels to determine the effect of ryanodine on the internal Ca(2+) stores.  相似文献   

6.
7.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

8.
Calsequestrin 2 (CSQ2) is generally regarded as the primary Ca2+-buffering molecule present inside the sarcoplasmic reticulum (SR) in cardiac cells, but findings from CSQ2 knockout experiments raise major questions about its role and necessity. This study determined the absolute amount of CSQ2 present in cardiac ventricular muscle to gauge its likely influence on SR free Ca2+ concentration ([Ca2+]) and maximal Ca2+ capacity. Ventricular tissue from hearts of freshly killed sheep was examined by SDS-PAGE without any fractionation, and CSQ2 was detected by Western blotting; this method avoided the >90% loss of CSQ2 occurring with usual fractionation procedures. Band intensities were compared against those for purified CSQ2 run on the same blots. Fidelity of quantification was verified by demonstrating that CSQ2 added to homogenates was detected with equal efficacy as purified CSQ2 alone. Ventricular tissue from sheep (n=8) contained 24±2 μmol CSQ2/kg wet wt. Total Ca2+ content of the ventricular tissue, measured by atomic absorption spectroscopy, was 430±20 μmol/kg (with SR Ca2+ likely<250 μmol/kg) and displayed a linear correlation with CSQ2 content, with gradient of ~10 Ca2+ per CSQ2. The large amount of CSQ2 bestows the SR with a high theoretical maximal Ca2+-binding capacity (~1 mmol Ca2+/kg ventricular tissue, assuming a maximum of ~40 Ca2+ per CSQ2) and would keep free [Ca2+] within the SR relatively low, energetically favoring Ca2+ uptake and reducing SR leak. In mice with CSQ2 ablated, histidine-rich Ca2+-binding protein was upregulated ~35% in ventricular tissue, possibly in compensation.  相似文献   

9.
In skeletal muscle, the release of calcium (Ca(2+)) by ryanodine sensitive sarcoplasmic reticulum (SR) Ca(2+) release channels (i.e., ryanodine receptors; RyR1s) is the primary determinant of contractile filament activation. Much attention has been focused on calsequestrin (CASQ1) and its role in SR Ca(2+) buffering as well as its potential for modulating RyR1, the L-type Ca(2+) channel (dihydropyridine receptor, DHPR) and other sarcolemmal channels through sensing luminal [Ca(2+)]. The genetic ablation of CASQ1 expression results in significant alterations in SR Ca(2+) content and SR Ca(2+) release especially during prolonged activation. While these findings predict a significant loss-of-function phenotype in vivo, little information on functional status of CASQ1 null mice is available. We examined fast muscle in vivo and in vitro and identified significant deficits in functional performance that indicate an inability to sustain contractile activation. In single CASQ1 null skeletal myofibers we demonstrate a decrease in voltage dependent RyR Ca(2+) release with single action potentials and a collapse of the Ca(2+) release with repetitive trains. Under voltage clamp, SR Ca(2+) release flux and total SR Ca(2+) release are significantly reduced in CASQ1 null myofibers. The decrease in peak Ca(2+) release flux appears to be solely due to elimination of the slowly decaying component of SR Ca(2+) release, whereas the rapidly decaying component of SR Ca(2+) release is not altered in either amplitude or time course in CASQ1 null fibers. Finally, intra-SR [Ca(2+)] during ligand and voltage activation of RyR1 revealed a significant decrease in the SR[Ca(2+)](free) in intact CASQ1 null fibers and a increase in the release and uptake kinetics consistent with a depletion of intra-SR Ca(2+) buffering capacity. Taken together we have revealed that the genetic ablation of CASQ1 expression results in significant functional deficits consistent with a decrease in the slowly decaying component of SR Ca(2+) release.  相似文献   

10.
From germinating pollen of lily, two types of villins, P-115-ABP and P-135-ABP, have been identified biochemically. Ca(2+)-CaM-dependent actin-filament binding and bundling activities have been demonstrated for both villins previously. Here, we examined the effects of lily villins on the polymerization and depolymerization of actin. P-115-ABP and P-135-ABP present in a crude protein extract prepared from germinating pollen bound to a DNase I affinity column in a Ca(2+)-dependent manner. Purified P-135-ABP reduced the lag period that precedes actin filament polymerization from monomers in the presence of either Ca(2+) or Ca(2+)-CaM. These results indicated that P-135-ABP can form a complex with G-actin in the presence of Ca(2+) and this complex acts as a nucleus for polymerization of actin filaments. However, the nucleation activity of P-135-ABP is probably not relevant in vivo because the assembly of G-actin saturated with profilin, a situation that mimics conditions found in pollen, was not accelerated in the presence of P-135-ABP. P-135-ABP also enhanced the depolymerization of actin filaments during dilution-mediated disassembly. Growth from filament barbed ends in the presence of Ca(2+)-CaM was also prevented, consistent with filament capping activity. These results suggested that lily villin is involved not only in the arrangement of actin filaments into bundles in the basal and shank region of the pollen tube, but also in regulating and modulating actin dynamics through its capping and depolymerization (or fragmentation) activities in the apical region of the pollen tube, where there is a relatively high concentration of Ca(2+).  相似文献   

11.
In many cell types, transfer of Ca(2+) released via ryanodine receptors (RyR) to the mitochondrial matrix is locally supported by high [Ca(2+)] microdomains at close contacts between the sarcoplasmic reticulum (SR) and mitochondria. Here we studied whether the close contacts were secured via direct physical coupling in cardiac muscle using isolated rat heart mitochondria (RHMs). "Immuno-organelle chemistry" revealed RyR2 and calsequestrin-positive SR particles associated with mitochondria in both crude and Percoll-purified "heavy" mitochondrial fractions (cRHM and pRHM), to a smaller extent in the latter one. Mitochondria-associated vesicles were also visualized by electron microscopy in the RHMs. Western blot analysis detected greatly reduced presence of SR markers (calsequestrin, SERCA2a, and phospholamban) in pRHM, suggesting that the mitochondria-associated particles represented a small subfraction of the SR. Fluorescence calcium imaging in rhod2-loaded cRHM revealed mitochondrial matrix [Ca(2+)] ([Ca(2+)](m)) responses to caffeine-induced Ca(2+) release that were prevented when thapsigargin was added to predeplete the SR or by mitochondrial Ca(2+) uptake inhibitors. Importantly, caffeine failed to increase [Ca(2+)] in the large volume of the incubation medium, suggesting that local Ca(2+) transfer between the SR particles and mitochondria mediated the [Ca(2+)](m) signal. Despite the substantially reduced SR presence, pRHM still displayed a caffeine-induced [Ca(2+)](m) rise comparable with the one recorded in cRHM. Thus, a relatively small fraction of the total SR is physically coupled and transfers Ca(2+) locally to the mitochondria in cardiac muscle. The transferred Ca(2+) stimulates dehydrogenase activity and affects mitochondrial membrane permeabilization, indicating the broad significance of the physical coupling in mitochondrial function.  相似文献   

12.
Agonist-induced contraction of airway smooth muscle (ASM) can be triggered by an elevation in the intracellular Ca(2+) concentration, primarily through the release of Ca(2+) from the sarcoplasmic reticulum (SR). The refilling of the SR is integral for subsequent contractions. It has been suggested that Ca(2+) entry via store-operated cation (SOC) and receptor-operated cation channels may facilitate refilling of the SR. Indeed, depletion of the SR activates substantial inward SOC currents in ASM that are composed of both Ca(2+) and Na(+). Accumulation of Na(+) within the cell may regulate Ca(2+) handling in ASM by forcing the Na(+)/Ca(2+) exchanger (NCX) into the reverse mode, leading to the influx of Ca(2+) from the extracellular domain. Since depletion of the SR activates substantial inward Na(+) current, it is conceivable that the reverse mode of the NCX may contribute to the intracellular Ca(2+) pool from which the SR is refilled. Indeed, successive contractions of bovine ASM, evoked by various agonists (ACh, histamine, 5-HT, caffeine) were significantly reduced upon removal of extracellular Na(+); whereas contractions evoked by KCl were unchanged by Na(+) depletion. Ouabain, a selective inhibitor of the Na(+)/K(+) pump, had no effect on the reductions observed under normal and zero-Na(+) conditions. KB-R7943, a selective inhibitor of the reverse mode of the NCX, significantly reduced successive contractions induced by all agonists without altering KCl responses. Furthermore, KB-R7943 abolished successive caffeine-induced Ca(2+) transients in single ASM cells. Together, these data suggest a role for the reverse mode of the NCX in refilling the SR in ASM following Ca(2+) mobilization.  相似文献   

13.
Lymphocyte signaling and activation leads to the influx of extracellular Ca(2+) via the activation of Ca(2+) release activated Ca(2+) (CRAC) channels in the plasma membrane. Activation of CRAC channels occurs following emptying of the endoplasmic reticulum intracellular Ca(2+) stores. One model to explain the coupling of store-emptying to CRAC activation is the secretion-like conformational coupling model. This model proposes that store depletion increases junctions between the endoplasmic reticulum and the plasma membrane in a manner that could be regulated by the cortical actin cytoskeleton. Here, we show that stabilization or depolymerization of the actin cytoskeleton failed to affect CRAC activation. We therefore conclude that rearrangement of the actin cytoskeleton is dispensable for store-operated Ca(2+) entry in T-cells.  相似文献   

14.
Many proteins retained within the endo/sarcoplasmic reticulum (ER/SR) lumen express the COOH-terminal tetrapeptide KDEL, by which they continuously recycle from the Golgi complex; however, others do not express the KDEL retrieval signal. Among the latter is calsequestrin (CSQ), the major Ca2+-binding protein condensed within both the terminal cisternae of striated muscle SR and the ER vacuolar domains of some neurons and smooth muscles. To reveal the mechanisms of condensation and establish whether it also accounts for ER/SR retention of CSQ, we generated a variety of constructs: chimeras with another similar protein, calreticulin (CRT); mutants truncated of COOH- or NH2-terminal domains; and other mutants deleted or point mutated at strategic sites. By transfection in L6 myoblasts and HeLa cells we show here that CSQ condensation in ER-derived vacuoles requires two amino acid sequences, one at the NH2 terminus, the other near the COOH terminus. Experiments with a green fluorescent protein GFP/CSQ chimera demonstrate that the CSQ-rich vacuoles are long-lived organelles, unaffected by Ca2+ depletion, whose almost complete lack of movement may depend on a direct interaction with the ER. CSQ retention within the ER can be dissociated from condensation, the first identified process by which ER luminal proteins assume a heterogeneous distribution. A model is proposed to explain this new process, that might also be valid for other luminal proteins.  相似文献   

15.
Calsequestrin (CSQ), the major low-affinity Ca(2+)-binding glycoprotein of striated muscle fibers, is concentrated to yield aggregates that occupy the lumen of the terminal cisternae of the sarcoplasmic reticulum (SR). When infected or transfected into L6 myoblast, the protein is also concentrated, however, in dense vacuoles apparently separate from the endoplasmic reticulum (ER). CSQ-rich cells appear otherwise normal; in particular, neither other proteins involved in Ca2+ homeostasis nor ER chaperones are increased. The CSQ dense vacuoles are shown herein to be specialized ER subdomains as demonstrated by 1) the endoglycosidase H sensitivity of their CSQ and 2) two markers, calreticulin and calnexin (but not others, protein disulfide isomerase and BiP), intermixed with the vacuole content. Their formation is shown to start with the aggregation of CSQ at discrete sites of the ER lumen. When cells were transfected with both CSQ and calreticulin, only the first gave rise to vacuoles; the second remained diffusely distributed within the ER lumen. The possibility that CSQ aggregation is an artifact of overexpression appears unlikely because 1) within dense vacuoles CSQ molecules are not disulfide cross-linked, 2) their turnover is relatively slow (t = 12 h), and 3) segregated CSQ is bound to large amounts of Ca2+. Transfection of a tagged CSQ into cells already overexpressing the protein revealed the continuous import of the newly synthesized protein into preassembled vacuoles. The tendency to aggregation appears, therefore, as a property contributing to the segregation of CSQ within the ER lumen and to its accumulation within specialized subdomains. The study of L6 cells expressing CSQ-rich vacuoles might thus ultimately help to unravel mechanisms by which the complexity of the sarcoplasmic reticulum is established in muscle fibers.  相似文献   

16.
Cardiac contraction and relaxation dynamics result from a set of simultaneously interacting Ca(2+) regulatory mechanisms. In this study, cardiocyte Ca(2+) dynamics were modeled using a set of six differential equations that were based on theories, equations, and parameters described in previous studies. Among the unique features of the model was the inclusion of bidirectional modulatory interplay between the sarcoplasmic reticular Ca(2+) release channel (SRRC) and calsequestrin (CSQ) in the SR lumen, where CSQ acted as a dynamic rather than simple Ca(2+) buffer, and acted as a Ca(2+) sensor in the SR lumen as well. The inclusion of this control mechanism was central in overcoming a number of assumptions that would otherwise have to be made about SRRC kinetics, SR Ca(2+) release rates, and SR Ca(2+) release termination when the SR lumen is assumed to act as a simple, buffered Ca(2+) sink. The model was sufficient to reproduce a graded Ca(2+)-induced Ca(2+) release (CICR) response, CICR with high gain, and a system with reasonable stability. As constructed, the model successfully replicated the results of several previously published experiments that dealt with the Ca(2+) dependence of the SRRC (, J. Gen. Physiol. 85:247-289), the refractoriness of the SRRC (, Am. J. Physiol. 270:C148-C159), the SR Ca(2+) load dependence of SR Ca(2+) release (, Am. J. Physiol. 268:C1313-C1329;, J. Biol. Chem. 267:20850-20856), SR Ca(2+) leak (, J. Physiol. (Lond.). 474:463-471;, Biophys. J. 68:2015-2022), SR Ca(2+) load regulation by leak and uptake (, J. Gen. Physiol. 111:491-504), the effect of Ca(2+) trigger duration on SR Ca(2+) release (, Am. J. Physiol. 258:C944-C954), the apparent relationship that exists between sarcoplasmic and sarcoplasmic reticular calcium concentrations (, Biophys. J. 73:1524-1531), and a variety of contraction frequency-dependent alterations in sarcoplasmic [Ca(2+)] dynamics that are normally observed in the laboratory, including rest potentiation, a negative frequency-[Ca(2+)] relationship, and extrasystolic potentiation. Furthermore, under the condition of a simulated Ca(2+) overload, an alternans-like state was produced. In summary, the current model of cardiocyte Ca(2+) dynamics provides an integrated theoretical framework of fundamental cellular Ca(2+) regulatory processes that is sufficient to predict a broad array of observable experimental outcomes.  相似文献   

17.
Under resting conditions, external Ca(2+) is known to enter skeletal muscle cells, whereas Ca(2+) stored in the sarcoplasmic reticulum (SR) leaks into the cytosol. The nature of the pathways involved in the sarcolemmal Ca(2+) entry and in the SR Ca(2+) leak is still a matter of debate, but several lines of evidence suggest that these Ca(2+) fluxes are up-regulated in Duchenne muscular dystrophy. We investigated here SR calcium permeation at resting potential and in response to depolarization in voltage-controlled skeletal muscle fibers from control and mdx mice, the mouse model of Duchenne muscular dystrophy. Using the cytosolic Ca(2+) dye Fura2, we first demonstrated that the rate of Ca(2+) increase in response to cyclopiazonic acid (CPA)-induced inhibition of SR Ca(2+)-ATPases at resting potential was significantly higher in mdx fibers, which suggests an elevated SR Ca(2+) leak. However, removal of external Ca(2+) reduced the rate of CPA-induced Ca(2+) increase in mdx and increased it in control fibers, which indicates an up-regulation of sarcolemmal Ca(2+) influx in mdx fibers. Fibers were then loaded with the low-affinity Ca(2+) dye Fluo5N-AM to measure intraluminal SR Ca(2+) changes. Trains of action potentials, chloro-m-cresol, and depolarization pulses evoked transient Fluo5N fluorescence decreases, and recovery of voltage-induced Fluo5N fluorescence changes were inhibited by CPA, demonstrating that Fluo5N actually reports intraluminal SR Ca(2+) changes. Voltage dependence and magnitude of depolarization-induced SR Ca(2+) depletion were found to be unchanged in mdx fibers, but the rate of the recovery phase that followed depletion was found to be faster, indicating a higher SR Ca(2+) reuptake activity in mdx fibers. Overall, CPA-induced SR Ca(2+) leak at -80 mV was found to be significantly higher in mdx fibers and was potentiated by removal of external Ca(2+) in control fibers. The elevated passive SR Ca(2+) leak may contribute to alteration of Ca(2+) homeostasis in mdx muscle.  相似文献   

18.
The level of Ca inside the sarcoplasmic reticulum (SR) is an important determinant of functional activity of the Ca release channel/ryanodine receptor (RyR) in cardiac muscle. However, the molecular basis of RyR regulation by luminal Ca remains largely unknown. In the present study, we investigated the potential role of the cardiac SR luminal auxiliary proteins calsequestrin (CSQ), triadin 1, and junctin in forming the luminal calcium sensor for the cardiac RyR. Recordings of single RyR channels incorporated into lipid bilayers, from either SR vesicle or purified RyR preparations, were performed in the presence of MgATP using Cs+ as the charge carrier. Raising luminal [Ca] from 20 microM to 5 mM increased the open channel probability (Po) of native RyRs in SR vesicles, but not of purified RyRs. Adding CSQ to the luminal side of the purified channels produced no significant changes in Po, nor did it restore the ability of RyRs to respond to luminal Ca. When triadin 1 and junctin were added to the luminal side of purified channels, RyR Po increased significantly; however, the channels still remained unresponsive to changes in luminal [Ca]. In RyRs reassociated with triadin 1 and junctin, adding luminal CSQ produced a significant decrease in activity. After reassociation with all three proteins, RyRs responded to rises of luminal [Ca] by increasing their Po. These results suggest that a complex of CSQ, triadin 1, and junctin confer RyR luminal Ca sensitivity. CSQ apparently serves as a luminal Ca sensor that inhibits the channel at low luminal [Ca], whereas triadin 1 and/or junctin may be required to mediate interactions of CSQ with RyR.  相似文献   

19.
The histidine-rich Ca(2+) binding protein (HRC) is a high capacity Ca(2+) binding protein in the sarcoplasmic reticulum (SR). Because HRC appears to interact directly with triadin, HRC may play a role in the regulation of Ca(2+) release during excitation-contraction coupling. In this study, we examined the physiological effects of HRC overexpression in rat neonatal cardiomyocytes. Both caffeine-induced and depolarization-induced Ca(2+) release from the SR were increased significantly in the HRC overexpressing cardiomyocytes. Consistently, the Ca(2+) content, normally depleted from the SR in the presence of cyclopiazonic acid (CPA), remained elevated in these cells. In contrast, the density and the ryanodine-binding kinetics of the ryanodine receptor (RyR)/Ca(2+) release channel were slightly reduced or not significantly altered in the HRC overexpressing cardiomyocytes. We suggest that HRC is involved in the regulation of releasable Ca(2+) content into the SR.  相似文献   

20.
In heart failure (HF), arrhythmogenic Ca(2+) release and chronic Ca(2+) depletion of the sarcoplasmic reticulum (SR) arise due to altered function of the ryanodine receptor (RyR) SR Ca(2+)-release channel. Dantrolene, a therapeutic agent used to treat malignant hyperthermia associated with mutations of the skeletal muscle type 1 RyR (RyR1), has recently been suggested to have effects on the cardiac type 2 RyR (RyR2). In this investigation, we tested the hypothesis that dantrolene exerts antiarrhythmic and inotropic effects on HF ventricular myocytes by examining multiple aspects of intracellular Ca(2+) handling. In normal rabbit myocytes, dantrolene (1 μM) had no effect on SR Ca(2+) load, postrest decay of SR Ca(2+) content, the threshold for spontaneous Ca(2+) wave initiation (i.e., the SR Ca(2+) content at which spontaneous waves initiate) and Ca(2+) spark frequency. In cardiomyocytes from failing rabbit hearts, SR Ca(2+) load and the wave initiation threshold were decreased compared with normal myocytes, Ca(2+) spark frequency was increased, and the postrest decay was potentiated. Using a novel approach of measuring cytosolic and intra-SR Ca(2+) concentration (using the low-affinity Ca(2+) indicator fluo-5N entrapped within the SR), we showed that treatment of HF cardiomyocytes with dantrolene rescued postrest decay and increased the wave initiation threshold. Additionally, dantrolene decreased Ca(2+) spark frequency while increasing the SR Ca(2+) content in HF myocytes. These data suggest that dantrolene exerts antiarrhythmic effects and preserves inotropy in HF cardiomyocytes by decreasing the incidence of diastolic Ca(2+) sparks, increasing the intra-SR Ca(2+) threshold at which spontaneous Ca(2+) waves occur, and decreasing the loss of Ca(2+) from the SR. Furthermore, the observation that dantrolene reduces arrhythmogenicity while at the same time preserves inotropy suggests that dantrolene is a potentially useful drug in the treatment of arrhythmia associated with HF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号