首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae Hal3 and Vhs3 are moonlighting proteins, forming an atypical heterotrimeric decarboxylase (PPCDC) required for CoA biosynthesis, and regulating cation homeostasis by inhibition of the Ppz1 phosphatase. The Schizosaccharomyces pombe ORF SPAC15E1.04 (renamed as Sp hal3) encodes a protein whose amino‐terminal half is similar to Sc Hal3 whereas its carboxyl‐terminal half is related to thymidylate synthase (TS). We show that Sp Hal3 and/or its N‐terminal domain retain the ability to bind to and modestly inhibit in vitro S. cerevisiae Ppz1 as well as its S. pombe homolog Pzh1, and also exhibit PPCDC activity in vitro and provide PPCDC function in vivo, indicating that Sp Hal3 is a monogenic PPCDC in fission yeast. Whereas the Sp Hal3 N‐terminal domain partially mimics Sc Hal3 functions, the entire protein and its carboxyl‐terminal domain rescue the S. cerevisiae cdc21 mutant, thus proving TS function. Additionally, we show that the 70 kDa Sp Hal3 protein is not proteolytically processed under diverse forms of stress and that, as predicted, Sp hal3 is an essential gene. Therefore, Sp hal3 represents a fusion event that joined three different functional activities in the same gene. The possible advantage derived from this surprising combination of essential proteins is discussed.  相似文献   

2.
Saccharomyces cerevisiae Hal3 is a conserved protein that binds the carboxyl-terminal catalytic domain of the PP1c (protein phosphatase 1)-related phosphatase Ppz1 and potently inhibits its activity, thus modulating all of the characterized functions so far of the phosphatase. It is unknown how Hal3 binds to Ppz1 and inhibits its activity. Although it contains a putative protein phosphatase 1c binding-like sequence (263KLHVLF268), mutagenesis analysis suggests that this motif is not required for Ppz1 binding and inhibition. The mutation of the conserved His378 (possibly involved in dehydrogenase catalytic activity) did not impair Hal3 functions or Ppz1 binding. Random mutagenesis of the 228 residue-conserved central region of Hal3 followed by a loss-of-function screen allowed the identification of nine residues important for Ppz1-related Hal3 functions. Seven of these residues cluster in a relatively small region spanning from amino acid 446 to 480. Several mutations affected Ppz1 binding and inhibition in vitro, whereas changes in Glu460 and Val462 did not alter binding but resulted in Hal3 versions unable to inhibit the phosphatase. Therefore, there are independent Hal3 structural elements required for Ppz1 binding and inhibition. S. cerevisiae encodes a protein (Vhs3) structurally related to Hal3. Recent evidence suggests that both mutations are synthetically lethal. Surprisingly, versions of Hal3 carrying mutations that strongly affected Ppz1 binding or inhibitory capacity were able to complement lethality. In contrast, the mutation of His378 did not. This finding suggests that Hal3 may have both Ppz1-dependent and independent functions involving different structural elements.  相似文献   

3.
Ppz Ser/Thr protein phosphatases (PPases) are found only in fungi and have been proposed as potential antifungal targets. In Saccharomyces cerevisiae Ppz1 (ScPpz1) is involved in regulation of monovalent cation homeostasis. ScPpz1 is inhibited by two regulatory proteins, Hal3 and Vhs3, which have moonlighting properties, contributing to the formation of an unusual heterotrimeric PPC decarboxylase (PPCDC) complex crucial for CoA biosynthesis. Here we report the functional characterization of CnPpz1 (CNAG_03673) and two possible Hal3‐like proteins, CnHal3a (CNAG_00909) and CnHal3b (CNAG_07348) from the pathogenic fungus Cryptococcus neoformans. Deletion of CnPpz1 or CnHal3b led to phenotypes unrelated to those observed in the equivalent S. cerevisiae mutants, and the CnHal3b‐deficient strain was less virulent. CnPpz1 is a functional PPase and partially replaced endogenous ScPpz1. Both CnHal3a and CnHal3b interact with ScPpz1 and CnPpz1 in vitro but do not inhibit their phosphatase activity. Consistently, when expressed in S. cerevisiae, they poorly reproduced the Ppz1‐regulatory properties of ScHal3. In contrast, both proteins were functional monogenic PPCDCs. The CnHal3b isoform was crystallized and, for the first time, the 3D‐structure of a fungal PPCDC elucidated. Therefore, our work provides the foundations for understanding the regulation and functional role of the Ppz1‐Hal3 system in this important pathogenic fungus.  相似文献   

4.
It is known that nonsense suppression efficiency in yeast is controlled both genetically and epigenetically. As many components of translation machinery are represented by phosphoproteins, it depends, in particular, on the activity of kinases and phosphatases. The Ppz1p/Hal3p complex is among them. In this complex, the Ppz1p phosphatase is a catalytic subunit and Hal3p negatively regulates its function. The aim of this work was to study mechanisms which relate the activity of Ppz1p/Hal3p complex to nonsense suppression efficiency. In this study we used a genetic approach consisting of the analysis of nonsense suppression phenotype of strains over-expressing HAL3 or PPZ1 genes and also bearing deletions or mutant alleles of genes which presumably could participate in the manifestation of these over-expressions. We have shown that Hal3p inhibits not only Ppz1p, but also the homologous phosphatase Ppz2p. Our data indicate that Ppz2p is also involved in the control of nonsense suppression efficiency. In the course of search for Ppz1p target protein, it was shown that Ppz1p dephosphorylates at least two proteins participating in translation. Moreover, Ppz1p affects nonsense suppression efficiency not only due to its phosphatase activity but also due to another mechanism triggered by its interaction with Hsp70 chaperones.  相似文献   

5.
It is known that the efficiency of nonsense suppression in yeasts is controlled both genetically and epigenetically. Since many components of translation machinery are represented by phosphoproteins, the efficiency depends, in particular, on the activity of kinases and phosphatases that include the Ppz1p/Hal3p complex. It contains Ppz1p phosphatase, which is a catalytic subunit, and Hal3p that negatively regulates its function. The aim of this work was to study the mechanisms which relate the activity of Ppz1p/Hal3p complex to nonsense suppression efficiency. In this study, we used a genetic approach implicating the analysis of nonsense suppression phenotype of the strains overexpressing HAL3 or PPZ1 genes and also bearing deletions or mutant alleles of genes, which presumably could participate in the manifestation of these overexpressions. We have shown that Hal3p inhibits not only Ppz1p but also the homologous phosphatase Ppz2p. Our data indicate that Ppz2p is also involved in the control of nonsense suppression efficiency. In the course of search for Ppz1p target protein, it was shown that Ppz1p dephosphorylates at least two proteins involved in translation. Moreover, Ppz1p affects the efficiency of nonsense suppression not only due to its phosphatase activity but also due to another mechanism triggered by its interaction with Hsp70 chaperones.  相似文献   

6.
Intracellular pH and K+ concentrations must be tightly controlled because they affect many cellular activities, including cell growth and death. The mechanisms of homeostasis of H+ and K+ are only partially understood. In the yeast Saccharomyces cerevisiae, proton efflux is mediated by the Pma1 H+-ATPase. As this pump is electrogenic, the activity of the Trk1 and -2 K+ uptake system is crucial for sustained Pma1p operation. The coordinated activities of these two systems determine cell volume, turgor, membrane potential, and pH. Genetic evidence indicates that Trk1p is activated by the Hal4 and -5 kinases and inhibited by the Ppz1 and -2 phosphatases, which, in turn, are inhibited by their regulatory subunit, Hal3p. We show that Trk1p, present in plasma membrane "rafts", physically interacts with Ppz1p, that Trk1p is phosphorylated in vivo, and that its level of phosphorylation increases in ppz1 and -2 mutants. Interestingly, both the interaction with and inhibition of Ppz1p by Hal3p are pH dependent. These results are consistent with a model in which the Ppz1-Hal3 interaction is a sensor of intracellular pH that modulates H+ and K+ homeostasis through the regulation of Trk1p activity.  相似文献   

7.
The yeast gene VHS3 (YOR054c) has been recently identified as a multicopy suppressor of the G(1)/S cell cycle blockade of a conditional sit4 and hal3 mutant. Vhs3 is structurally related to Hal3, a negative regulatory subunit of the Ser/Thr protein phosphatase Ppz1 important for cell integrity, salt tolerance, and cell cycle control. Phenotypic analyses using vhs3 mutants and overexpressing strains clearly show that Vhs3 has functions reminiscent to those of Hal3 and contrary to those of Ppz1. Mutation of Vhs3 His(459), equivalent to the supposedly functionally relevant His(90) in the plant homolog AtHal3a, did not affect Vhs3 functions mentioned above. Similarly to Hal3, Vhs3 binds in vivo to the C-terminal catalytic moiety of Ppz1 and inhibits in vitro its phosphatase activity. Therefore, our results indicate that Vhs3 plays a role as an inhibitory subunit of Ppz1. We have found that the vhs3 and hal3 mutations are synthetically lethal. Remarkably, lethality is not suppressed by deletion of PPZ1, PPZ2, or both phosphatase genes, indicating that it is not because of an excess of Ppz phosphatase activity. Furthermore, a Vhs3 version carrying the H459A mutation did not rescue the synthetically lethal phenotype. A conditional vhs3 tetO:HAL3 double mutant displays, in the presence of doxycycline, a flocculation phenotype that is dependent on the presence of Flo8 and Flo11. These results indicate that, besides its role as Ppz1 inhibitory subunit, Vhs3 (and probably Hal3) might have important Ppz-independent functions.  相似文献   

8.
Ole e 9 is an olive pollen allergen belonging to group 2 of pathogenesis-related proteins. The protein is composed of two immunological independent domains: an N-terminal domain (NtD) with 1,3-beta-glucanase activity, and a C-terminal domain (CtD) that binds 1,3-beta-glucans. We have determined the three-dimensional structure of CtD-Ole e 9 (101 amino acids), which consists of two parallel alpha-helices forming an angle of approximately 55 degrees , a small antiparallel beta-sheet with two short strands, and a 3-10 helix turn, all connected by long coil segments, resembling a novel type of folding among allergens. Two regions surrounded by aromatic residues (F49, Y60, F96, Y91 and Y31, H68, Y65, F78) have been localized on the protein surface, and a role for sugar binding is suggested. The epitope mapping of CtD-Ole e 9 shows that B-cell epitopes are mainly located on loops, although some of them are contained in secondary structural elements. Interestingly, the IgG and IgE epitopes are contiguous or overlapped, rather than coincident. The three-dimensional structure of CtD-Ole e 9 might help to understand the underlying mechanism of its biochemical function and to determine possible structure-allergenicity relationships.  相似文献   

9.
The Ser/Thr protein phosphatase Ppz1 from Saccharomyces cerevisiae is the best characterized member of a family of enzymes only found in fungi. Ppz1 is regulated in vivo by two inhibitory subunits, Hal3 and Vhs3, which are moonlighting proteins also involved in the decarboxylation of the 4-phosphopantothenoylcysteine (PPC) intermediate required for coenzyme A biosynthesis. It has been reported that, when overexpressed, Ppz1 is the most toxic protein in yeast. However, the reasons for such toxicity have not been elucidated. Here we show that the detrimental effect of excessive Ppz1 expression is due to an increase in its phosphatase activity and not to a plausible down-titration of the PPC decarboxylase components. We have identified several genes encoding ribosomal proteins and ribosome assembly factors as mild high-copy suppressors of the toxic Ppz1 effect. Ppz1 binds to ribosomes engaged in translation and copurifies with diverse ribosomal proteins and translation factors. Ppz1 overexpression results in Gcn2-dependent increased phosphorylation of eIF2α at Ser-51. Consistently, deletion of GCN2 partially suppresses the growth defect of a Ppz1 overexpressing strain. We propose that the deleterious effects of Ppz1 overexpression are in part due to alteration in normal protein synthesis.  相似文献   

10.
The yeast Ppz protein phosphatases and the Hal3p inhibitory subunit are important determinants of salt tolerance, cell wall integrity and cell cycle progression. We present several lines of evidence showing that these disparate phenotypes are connected by the fact that Ppz regulates K+ transport. First, salt tolerance, cell wall integrity and cell cycle phenotypes of Ppz mutants are dependent on the Trk K+ transporters. Secondly, Ppz mutants exhibit altered activity of the Trk system, as measured by rubidium uptake. Thirdly, Ppz mutants exhibit altered intracellular K+ and pH, as expected from H+ efflux providing electrical balance during K+ uptake. Our unifying picture of Ppz phenotypes contends that activation of Trk by decreased Ppz activity results in plasma membrane depolarization (reducing uptake of toxic cations), increased intracellular K+ and turgor (compromising cell integrity), and increased intracellular pH (augmenting the expression of pH-regulated genes and facilitating alpha-factor recovery). In addition to providing a coherent explanation for all Ppz-dependent phenotypes, our results provide evidence for a causal relationship between intracellular cation homeostasis and a potential cell cycle checkpoint.  相似文献   

11.
12.
Yeast cells overexpressing the Ser/Thr protein phosphatase Ppz1 display a slow-growth phenotype. These cells recover slowly from alpha-factor or nutrient depletion-induced G1 arrest, showing a considerable delay in bud emergence as well as in the expression of the G1 cyclins Cln2 and Clb5. Therefore, an excess of the Ppz1 phosphatase interferes with the normal transition from G1 to S phase. The growth defect is rescued by overexpression of the HAL3/SIS2 gene, encoding a negative regulator of Ppz1. High-copy-number expression of HAL3/SIS2 has been reported to improve cell growth and to increase expression of G1 cyclins in sit4 phosphatase mutants. We show here that the described effects of HAL3/SIS2 on sit4 mutants are fully mediated by the Ppz1 phosphatase. The growth defect caused by overexpression of PPZ1 is intensified in strains with low G1 cyclin levels (such as bck2Delta or cln3Delta mutants), whereas mutation of PPZ1 rescues the synthetic lethal phenotype of sit4 cln3 mutants. These results reveal a role for Ppz1 as a regulatory component of the yeast cell cycle, reinforce the notion that Hal3/Sis2 serves as a negative modulator of the biological functions of Ppz1, and indicate that the Sit4 and Ppz1 Ser/Thr phosphatases play opposite roles in control of the G1/S transition.  相似文献   

13.
The Gel/Gas/Phr family of fungal beta(1,3)-glucanosyltransferases plays an important role in cell wall biogenesis by processing the main component beta(1,3)-glucan. Two subfamilies are distinguished depending on the presence or absence of a C-terminal cysteine-rich domain, denoted "Cys-box." The N-terminal domain (NtD) contains the catalytic residues for transglycosidase activity and is separated from the Cys-box by a linker region. To obtain a better understanding of the structure and function of the Cys-box-containing subfamily, we identified the disulfide bonds in Gas2p from Saccharomyces cerevisiae by an improved mass spectrometric methodology. We mapped two separate intra-domain clusters of three and four disulfide bridges. One of the bonds in the first cluster connects a central Cys residue of the NtD with a single conserved Cys residue in the linker. Site-directed mutagenesis of the Cys residue in the linker resulted in an endoplasmic reticulum precursor that was not matured and underwent a gradual degradation. The relevant disulfide bond has a crucial role in folding as it may stabilize the NtD and facilitate its interaction with the C-terminal portion of a Gas protein. The four disulfide bonds in the Cys-box are arranged in a manner consistent with a partial structural resemblance with the plant X8 domain, an independent carbohydrate-binding module that possesses only three disulfide bonds. Deletion of the Cys-box in Gas2 or Gas1 proteins led to the formation of an NtD devoid of any enzymatic activity. The results suggest that the Cys-box is required for proper folding of the NtD and/or substrate binding.  相似文献   

14.
The Gag polyprotein is the major structural protein found in all classes of retroviruses. Interactions between Gag molecules control key events at several stages in the cycle of infection. In particular, the capsid (CA) domain of Gag mediates many of the protein-protein interactions that drive retrovirus assembly, maturation and disassembly. Moreover, in murine leukaemia virus (MLV), sequence variation in CA confers N and B tropism that determines susceptibility to the intracellular restriction factors Fv1n and Fv1b. We have determined the structure of the N-terminal domain (NtD) of CA from B-tropic MLV. A comparison of this structure with that of the NtD of CA from N-tropic MLV reveals that although the crystals belong to different space groups, CA monomers are packed with the same P6 hexagonal arrangement. Moreover, interhexamer crystal contacts between residues located at the periphery of the discs are conserved, indicating that switching of tropism does not result in large differences in the backbone conformation, nor does it alter the quaternary arrangement of the disc. We have also examined crystals of the N-tropic MLV CA containing both N- and C-terminal domains. In this case, the NtD hexamer is still present; however, the interhexamer spacing is increased and the conserved interhexamer contacts are absent. Investigation into the effects of mutation of residues that mediate interhexamer contacts reveals that amino acid substitutions at these positions cause severe defects in viral assembly, budding and Gag processing. Based on our crystal structures and mutational analysis, we propose that in MLV, interactions between the NtDs of CA are required for packing of Gag molecules in the early part of immature particle assembly. Moreover, we present a model where proteolytic cleavage at maturation results in migration of CA C-terminal domains into interstitial spaces between NtD hexamers. As a result, NtD-mediated interhexamer contacts present in the immature particle are displaced and the less densely packed lattice with increased hexamer-hexamer spacing characteristic of the viral core is produced.  相似文献   

15.
Bozza WP  Zhuang Z 《Biochemistry》2011,50(29):6423-6432
Deubiquitinating enzymes (DUBs) have emerged as essential players in a myriad of cellular processes, yet the regulation of DUB function remains largely unknown. While some DUBs rely on the formation of complex for regulation of enzymatic activity, many DUBs utilize interdomain interactions to regulate catalysis. Here we report the biochemical characterization of a multidomain deubiquitinating enzyme, Ubp15, from Saccharomyces cerevisiae. Steady-state kinetic investigation showed that Ubp15 is a highly active DUB. We identified active-site residues that are required for catalysis. We have also identified key residues on Ubp15 required for ubiquitin binding and catalysis. We further demonstrated that Ubp15's enzymatic activity is regulated by the N- and C-terminal domains that flank the catalytic core domain. Moreover, we demonstrated that Ubp15 physically interacts with a WD40 repeat-containing protein, Cdh1, by copurification experiments. Interestingly, unlike other DUBs that specifically interact with WD40 repeat-containing proteins, Cdh1 does not function in stimulating Ubp15's activity. The possible cellular function of Ubp15 in cell cycle regulation is discussed in view of the specific interaction between Ubp15 and Cdh1, an activator of the anaphase-promoting complex/cyclosome (APC/C).  相似文献   

16.
Chu MH  Liu KL  Wu HY  Yeh KW  Cheng YS 《Planta》2011,234(2):243-254
Tarocystatin (CeCPI) from taro (Colocasia esculenta cv. Kaohsiung no. 1), a group-2 phytocystatin, shares a conserved N-terminal cystatin domain (NtD) with other phytocystatins but contains a C-terminal cystatin-like extension (CtE). The structure of the tarocystatin–papain complex and the domain interaction between NtD and CtE in tarocystatin have not been determined. We resolved the crystal structure of the phytocystatin–papain complex at resolution 2.03 Å. Surprisingly, the structure of the NtD–papain complex in a stoichiometry of 1:1 could be built, with no CtE observed. Only two remnant residues of CtE could be built in the structure of the CtE–papain complex. Therefore, CtE is easily digested by papain. To further characterize the interaction between NtD and CtE, three segments of tarocystatin, including the full-length (FL), NtD and CtE, were used to analyze the domain–domain interaction and the inhibition ability. The results from glutaraldehyde cross-linking and yeast two-hybrid assay indicated the existence of an intrinsic flexibility in the region linking NtD and CtE for most tarocystatin molecules. In the inhibition activity assay, the glutathione-S-transferase (GST)-fused FL showed the highest inhibition ability without residual peptidase activity, and GST-NtD and FL showed almost the same inhibition ability, which was higher than with NtD alone. On the basis of the structures, the linker flexibility and inhibition activity of tarocystatins, we propose that the overhangs from the cystatin domain may enhance the inhibition ability of the cystatin domain against papain.  相似文献   

17.
Protein phosphatases 2C are a family of conserved enzymes involved in many aspects of the cell biology. We reported that, in the yeast Saccharomyces cerevisiae, overexpression of the Ptc3p isoform resulted in increased lithium tolerance in the hypersensitive hal3 background. We have found that the tolerance induced by PTC3 overexpression is also observed in wild-type cells and that this is most probably the result of increased expression of the ENA1 Na(+)-ATPase mediated by the Hog1 MAP kinase pathway. This effect does not require a catalytically active protein. Surprisingly, deletion of PTC3 (similarly to that of PTC2, PTC4 or PTC5) does not confer a lithium-sensitive phenotype, but mutation of PTC1 does. Lack of PTC1 in an ena1-4 background did not result in additive lithium sensitivity and the ptc1 mutant showed a decreased expression of the ENA1 gene in cells stressed with LiCl. In agreement, under these conditions, the ptc1 mutant was less effective in extruding Li(+) and accumulated higher concentrations of this cation. Deletion of PTC1 in a hal3 background did not exacerbate the halosensitive phenotype of the hal3 strain. In addition, induction from the ENA1 promoter under LiCl stress decreased similarly (50%) in hal3, ptc1 and ptc1 hal3 mutants. Finally, mutation of PTC1 virtually abolishes the increased tolerance to toxic cations provided by overexpression of Hal3p. These results indicate that Ptc1p modulates the function of Ena1p by regulating the Hal3/Ppz1,2 pathway. In conclusion, overexpression of PTC3 and lack of PTC1 affect lithium tolerance in yeast, although through different mechanisms.  相似文献   

18.
C M Chen  L R You  L H Hwang    Y H Lee 《Journal of virology》1997,71(12):9417-9426
Previous studies suggest that the core protein of hepatitis C virus (HCV) has a pleiotropic function in the replication cycle of the virus. To understand the role of this protein in HCV pathogenesis, we used a yeast two-hybrid protein interaction cloning system to search for cellular proteins physically interacting with the HCV core protein. One such cellular gene was isolated and characterized as the gene encoding the lymphotoxin-beta receptor (LT-betaR). In vitro binding analysis demonstrated that the HCV core protein binds to the C-terminal 98 amino acids within the intracellular domain of the LT-betaR that is involved in signal transduction, although the binding affinity of the full-length HCV core protein was weaker than that of its C-terminally truncated form. Our results also indicated that the N-terminal 40-amino-acid segment of the HCV core protein was sufficient for interaction with LT-betaR and that the core protein could form complexes with the oligomeric form of the intracellular domain of LT-betaR, which is a prerequisite for downstream signaling of this receptor. Similar to other members of the tumor necrosis factor (TNF) receptor superfamily, LT-betaR is involved in the cytotoxic effect of the signaling pathway, and thus we have elucidated the biological consequence of interaction between the HCV core protein and LT-betaR. Our results indicated that in the presence of the synergizing agent gamma interferon, the HCV core protein enhances the cytotoxic effects of recombinant forms of LT-betaR ligand in HeLa cells but not in hepatoma cells. Furthermore, this enhancement of the cytolytic activity was cytokine specific, since in the presence of cycloheximide, the expression of the HCV core protein did not elicit an increase in the cytolytic activity of TNF in both HeLa and hepatoma cells. In summary, the HCV core protein can associate with LT-betaR, and this protein-protein interaction has a modulatory effect on the signaling pathway of LT-betaR in certain cell types. Given the known roles of LT-betaR/LT-alpha1,beta2 receptor-ligand interactions in the normal development of peripheral lymphoid organs and in triggering cytolytic activity and NF-kappaB activation in certain cell types, our finding implies that the HCV core protein may aggravate these biological functions of LT-betaR, resulting in pathogenesis in HCV-infected cells.  相似文献   

19.
The Saccharomyces cerevisiae open reading frame YFR003c encodes a small (155-amino acid) hydrophilic protein that we identified as a novel, heat-stable inhibitor of type 1 protein phosphatase (Ypi1). Ypi1 interacts physically in vitro with both Glc7 and Ppz1 phosphatase catalytic subunits, as shown by pull-down assays. Ypi1 inhibits Glc7 but appears to be less effective toward Ppz1 phosphatase activity under the conditions tested. Ypi1 contains a 48RHNVRW53 sequence, which resembles the characteristic consensus PP1 phosphatase binding motif. A W53A mutation within this motif abolishes both binding to and inhibition of Glc7 and Ppz1 phosphatases. Deletion of YPI1 is lethal, suggesting a relevant role of the inhibitor in yeast physiology. Cells overexpressing Ypi1 display a number of phenotypes consistent with an inhibitory role of this protein on Glc7, such as decreased glycogen content and an increased growth defect in a slt2/mpk1 mitogen-activated protein kinase-deficient background. Taking together, these results define Ypi1 as the first inhibitory subunit of Glc7 identified in budding yeast.  相似文献   

20.
GLC7 encodes an essential serine/threonine protein type I phosphatase in Saccharomyces cerevisiae. Three other phosphatases (Ppz1p, Ppz2p, and Sal6p) share >59% identity in their catalytic region with Glc7p. ppz1 ppz2 null mutants have no apparent growth defect on rich media. However, null alleles of PPZ1 and PPZ2, in combination with mutant alleles of GLC7, confer a range of growth defects varying from slow growth to lethality. These results indicate that Glc7p, Ppz1p, and Ppz2p may have overlapping functions. To determine if this overlap extends to interaction with targeting subunits, Glc7p-binding proteins were tested for interaction in the two-hybrid system with the functional catalytic domain of Ppz1p. Ppz1p interacts strongly with a number of Glc7p regulatory subunits, including Glc8p, a protein that shares homology with mammalian PP1 inhibitor I2. Genetic data suggest that Glc8p positively affects both Glc7p and Ppz1p functions. Together our data suggest that Ppz1p and Ppz2p may have overlapping functions with Glc7p and that all three phosphatases may act through common regulatory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号