首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In normal prostate, androgen-dependent androgen receptor (AR) signaling within prostate stromal cells induces their secretion of paracrine factors, termed “andromedins” which stimulate growth of the epithelial cells. The present studies demonstrate that androgen-dependent andromedin-driven growth stimulation is counter-balanced by androgen-induced AR signaling within normal adult prostate epithelial cells resulting in terminal G0 growth arrest coupled with terminal differentiation into ΔNp63-negative, PSA-expressing secretory luminal cells. This cell autonomous AR-driven terminal differentiation requires DNA-binding of the AR protein, is associated with decreases in c-Myc m-RNA and protein, are coupled with increases in p21, p27, and SKP-2 protein expression, and does not require functional p53. These changes result in down-regulation of Cyclin D1 protein and RB phosphoryation. shRNA knockdown documents that neither RB, p21, p27 alone or in combination are required for such AR-induced G0 growth arrest. Transgenic expression of a constitutive vector to prevent c-Myc down-regulation overrides AR-mediated growth arrest in normal prostate epithelial cells, which documents that AR-induced c-Myc down-regulation is critical in terminal growth arrest of normal prostate epithelial cells. In contrast, in prostate cancer cells, androgen-induced AR signaling paradoxically up-regulates c-Myc expression and stimulates growth as documented by inhibition of both of these responses following exposure to the AR antagonist, bicalutamide. These data document that AR signaling is converted from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells during prostatic carcinogenesis and that this conversion involves a gain of function for regulation of c-Myc expression.  相似文献   

2.
It was previously suggested that the 25-Vitamin-D3-1-hydroxylase (CYP27B1) is downregulated during human prostate tumor pathogenesis while the catabolic 25-Vitamin-D3-24-hydroxylase (CYP24) expression is increased. The latter could lead to resistance against the antimitotic, prodifferentiating activity of 1,25-dihydroxycholecalciferol. Our hypothesis was that regulation of Vitamin D hydroxylase expression during prostate tumor progression might be under epigenetic control. We demonstrate by real time RT-PCR that PNT-2 human normal prostate cells indeed possess CYP27B1, but are practically devoid of CYP24 mRNA, whereas DU-145 cancer cells have constitutive expression of CYP24, and very low levels of CYP27B1 mRNA. Treatment of PNT-2 cells with the methylation inhibitor 5-aza-2′-deoxycytidine together with the deacetylation inhibitor trichostatin A resulted in elevation of both CYP27B1 and CYP24 mRNA expression demonstrating that even in normal human prostate cells expression of Vitamin D hydroxylases may be under epigenetic control. In the DU-145 malignant cell line trichostatin A together with 5-aza-2′-deoxycytidine increased CYP27B1 mRNA expression to a smaller extent than in normal cells, however this resulted in a highly significant increase in 1-hydroxylation capacity. This demonstrates for the first time that synthesis of 1,25-dihydroxycholecalciferol in human prostate tumors could be reinitiated by epigenetic regulators.  相似文献   

3.
4.
The existence of circulating microRNAs (miRNAs) in the blood of cancer patients has raised the possibility that miRNAs may serve as a novel diagnostic marker. However, the secretory mechanism and biological function of extracellular miRNAs remain unclear. Here, we show that miRNAs are released through a ceramide-dependent secretory machinery and that the secretory miRNAs are transferable and functional in the recipient cells. Ceramide, whose biosynthesis is regulated by neutral sphingomyelinase 2 (nSMase2), triggers secretion of small membrane vesicles called exosomes. The decreased activity of nSMase2 with a chemical inhibitor, GW4869, and a specific small interfering RNA resulted in the reduced secretion of miRNAs. Complementarily, overexpression of nSMase2 increased extracellular amounts of miRNAs. We also revealed that the endosomal sorting complex required for transport system is unnecessary for the release of miRNAs. Furthermore, a tumor-suppressive miRNA secreted via this pathway was transported between cells and exerted gene silencing in the recipient cells, thereby leading to cell growth inhibition. Our findings shed a ray of light on the physiological relevance of secretory miRNAs.  相似文献   

5.
The 14-3-3sigma is a negative regulator of the cell cycle, which is induced by p53 in response to DNA damage. It has been characterized as an epithelium-specific marker and down-regulation of the protein has been shown in breast cancers, suggesting its tumor-suppressive activity in epithelial cells. Here we demonstrate that 14-3-3sigma protein is down-regulated in human prostate cancer cell lines, LNCaP, PC3, and DU145 compared with normal prostate epithelial cells. Immunohistochemical analysis of primary prostate cells shows that the expression of 14-3-3sigma protein is epithelial cell-specific. Among prostate pathological specimens, > 95% of benign hyperplasia samples show significant and diffuse immunostaining of 14-3-3sigma in the cytoplasm whereas < 20% of carcinoma samples show positive staining. In terms of mechanisms for the down-regulation of 14-3-3sigma in prostate cancer cells, hypermethylation of the gene promoter plays a causal role in LNCaP cells as 14-3-3sigma mRNA level was elevated by 5-aza-2'-deoxycytidine demethylating treatment. Intriguingly, the proteasome-mediated proteolysis is responsible for 14-3-3sigma reduction in DU145 and PC3 cells, as 14-3-3sigma protein expression was increased by treatment with a proteasome inhibitor MG132. Furthermore, tumor necrosis factor-related apoptosis-inducing ligand enhances 14-3-3sigma gene and protein expression in DU145 and PC3 cells. These data suggest that 14-3-3sigma expression is down-regulated during the neoplastic transition of prostate epithelial cells.  相似文献   

6.
Oncogenic fusion proteins belong to an important class that disrupts gene expression networks in a cell. Astonishingly, fusion-positive prostate cancer cells enable the multi-gene regulatory capability of miRNAs to remodel the signal transduction landscape, enhancing or antagonizing the transmission of information to downstream effectors. Accumulating evidence substantiates the fact that miRNAs translate into dose-dependent responsiveness of cells to signaling regulators in transmembrane protease serine 2:ETS-related gene (TMPRSS2-ERG)-positive cells. Wide ranging signaling proteins are the targets for the degree of quantitative fluctuations imposed by miRNAs. miRNA signatures are aberrantly expressed in fusion-positive cancer cells, suggesting that they have a cumulative effect on tumor aggressiveness. It seems attractive to note that TMPRSS2:ERG fusion has a stronger effect as tumors positive for the oncogenic TMPRSS2:ERG have dysregulated oncomirs and tumor suppressor miRNA signature. It is undeniable that a comprehensive analysis of the prostate cancer microRNAome is necessary to uncover novel microRNAs and pathways associated with prostate cancer. Moreover, the identification and validation of miRNA signature in TMPRSS2-ERG-positive prostate cancer cells may help to identify novel molecular targets and pathways for personalized therapy.  相似文献   

7.
In the normal prostate epithelium, androgen receptor (AR) negative basal epithelial cells adhere to the substratum, while AR expressing secretory cells lose substratum adhesion. In contrast, prostate cancer cells both express AR and adhere to a tumor basement membrane. In this review, we describe the differential expression of integrins, growth factor receptors (GFRs), and AR in normal and cancerous epithelium. In addition, we discuss how signals from integrins, GFRs, and AR are integrated to regulate the proliferation and survival of normal and malignant prostate epithelial cells. While cell adhesion is likely of great importance when considering therapeutic approaches for treatment of metastatic prostate cancer, no data on integrin expression are available from tissues of prostate cancer metastasis. However, several drug targets that are upregulated after androgen ablative therapy regulate cell adhesion and thus novel targeted therapies indirectly interfere with cell adhesion mechanisms in prostate cancer cells.  相似文献   

8.
Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is overexpressed in prostate cancer, but the mechanism by which MIF exerts effects on tumor cells remains undetermined. MIF interacts with its identified membrane receptor, CD74, in association with CD44, resulting in ERK 1/2 activation. Therefore, we hypothesized that increased expression or surface localization of CD74 and MIF overexpression by prostate cancer cells regulated tumor cell viability. Prostate cancer cell lines (LNCaP and DU-145) had increased MIF gene expression and protein levels compared with normal human prostate or benign prostate epithelial cells (p < 0.01). Although MIF, CD74, and CD44 variant 9 expression were increased in both androgen-dependent (LNCaP) and androgen-independent (DU-145) prostate cancer cells, cell surface of CD74 was only detected in androgen-independent (DU-145) prostate cancer cells. Therefore, treatments aimed at blocking CD74 and/or MIF (e.g., inhibition of MIF or CD74 expression by RNA interference or treatment with anti-MIF- or anti-CD74- neutralizing Abs or MIF-specific inhibitor, ISO-1) were only effective in androgen-independent prostate cancer cells (DU-145), resulting in decreased cell proliferation, MIF protein secretion, and invasion. In DU-145 xenografts, ISO-1 significantly decreased tumor volume and tumor angiogenesis. Our results showed greater cell surface CD74 in DU-145 prostate cancer cells that bind to MIF and, thus, mediate MIF-activated signal transduction. DU-145 prostate cancer cell growth and invasion required MIF activated signal transduction pathways that were not necessary for growth or viability of androgen-dependent prostate cells. Thus, blocking MIF either at the ligand (MIF) or receptor (CD74) may provide new, targeted specific therapies for androgen-independent prostate cancer.  相似文献   

9.
Six-transmembrane epithelial antigen of the prostate-1 (STEAP-1) is a novel cell surface protein overexpressed only in the prostate among normal tissues and various types of cancer including prostate, bladder, lung, and ovarian cancer. Although its function in prostate and tumor cells has been remained unclear, due to its unique and restricted expression, STEAP-1 is expected to be an attractive target for cancer therapy. Here, we show that knockdown of STEAP-1 in human cancer cells caused the retardation of tumor growth compared with wild type in vivo. In contrast, STEAP-1 introduced tumor cells augmented the tumor growth compared with STEAP-1-negative wild type cells. Using dye transfer assay, we demonstrate that the STEAP-1 is involved in intercellular communication between tumor cells and adjacent tumor stromal cells and therefore may play a key role for the tumor growth in vivo. These data indicate the inhibition of the STEAP-1 function or expression can be a new strategy for cancer therapy.  相似文献   

10.
Tumorigenesis often involves specific changes in cell motility and intercellular adhesion. Understanding the collective cancer cell behavior associated with these specific changes could facilitate the detection of malignant characteristics during tumor growth and invasion. In this study, a cellular vertex model is developed to investigate the collective dynamics of a disk-like aggregate of cancer cells confined in a confluent monolayer of normal cells. The effects of intercellular adhesion and cell motility on tumor progression are examined. It is found that the stresses in both the cancer cells and the normal cells increase with tumor growth, resulting in a crowded environment and enhanced cell apoptosis. The intercellular adhesion between cancer cells and normal cells is revealed to promote tumor growth and invasion. The tumor invasion dynamics hinges on the motility of cancer cells. The cancer cells could orchestrate into different collective migration modes, e.g., directional migration and rotational oscillations, dictated by the competition between cell persistence and local coordination. Phase diagrams are established to reveal the competitive mechanisms. This work highlights the role of mechanics in regulating tumor growth and invasion.  相似文献   

11.
12.
13.
Abstract Monoamine oxidase A (MAO-A) expression is associated with high-grade prostate cancer. Immunohistochemistry showed that MAO-A is also expressed in the basal epithelial cells of normal prostate glands. Using cultured primary prostatic epithelial cells as a model, we showed that MAO-A prevents basal epithelial cells from differentiating into secretory cells. Under differentiation-promoting conditions, clorgyline, an irreversible MAO-A inhibitor, induced secretory cell-like morphology and repressed expression of cytokeratin 14, a basal cell marker. More importantly, clorgyline induced mRNA and protein expression of androgen receptor (AR), a hallmark of secretory epithelial cells. In clorgyline-treated cells, androgen induced luciferase activity controlled by the promoter of prostate-specific antigen, an AR target gene, in a dose-dependent manner. This activity was blocked by the AR antagonist Casodex, showing that AR is functional. In turn, androgen decreased MAO-A expression in clorgyline-treated, secretory-like cells. Our results demonstrated that cultured basal epithelial cells have the potential to differentiate into secretory cells, and that inhibition of MAO-A is a key factor in promoting this process. Increased expression of MAO-A in high-grade prostate cancer may be an important contributor to its de-differentiated phenotype, raising the possibility that MAO-A inhibition may restore differentiation and reverse the aggressive behavior of high-grade cancer.  相似文献   

14.
The main aim of our study is to determine the significance of the stromal microenvironment in the malignant behavior of prostate cancer. The stroma-derived growth factors/cytokines and hyaluronan act in autocrine/paracrine ways with their receptors, including receptor-tyrosine kinases and CD44 variants (CD44v), to potentiate and support tumor epithelial cell survival. Overexpression of hyaluronan, CD44v9 variants, and stroma-derived growth factors/cytokines are specific features in many cancers, including prostate cancer. Androgen/androgen receptor interaction has a critical role in regulating prostate cancer growth. Our previous study showed that 1) that increased synthesis of hyaluronan in normal epithelial cells promotes expression of CD44 variants; 2) hyaluronan interaction with CD44v6-v9 promotes activation of receptor-tyrosine kinase, which stimulates phosphatidylinositol 3-kinase-induced cell survival pathways; and 3) CD44v6/short hairpin RNA reduces colon tumor growth in vivo (Misra, S., Hascall, V. C., De Giovanni, C., Markwald, R. R., and Ghatak, S. (2009) J. Biol. Chem. 284, 12432–12446). Our results now show that hepatocyte growth factor synthesized by myofibroblasts associated with prostate cancer cells induces activation of HGF-receptor/cMet and stimulates hyaluronan/CD44v9 signaling. This, in turn, stabilizes the androgen receptor functions in prostate cancer cells. The stroma-derived HGF induces a lipid raft-associated signaling complex that contains CD44v9, cMet/phosphatidylinositol 3-kinase, HSP90 and androgen receptor. CD44v9/short hairpin RNA reverses the assembly of these components in the complex and inhibits androgen receptor function. Our results provide new insight into the hyaluronan/CD44v9-regulated androgen receptor function and the consequent malignant activities in prostate cancer cells. The present study describes a physiologically relevant in vitro model for studying the molecular mechanisms by which stroma-derived HGF and hyaluronan influence androgen receptor and CD44 functions in the secretory epithelia during prostate carcinogenesis.  相似文献   

15.
Cancer stem cells (CSCs), or tumor-initiating cells, are involved in tumor progression and metastasis. MicroRNAs (miRNAs) regulate both normal stem cells and CSCs, and dysregulation of miRNAs has been implicated in tumorigenesis. CSCs in many tumors--including cancers of the breast, pancreas, head and neck, colon, small intestine, liver, stomach, bladder and ovary--have been identified using the adhesion molecule CD44, either individually or in combination with other marker(s). Prostate CSCs with enhanced clonogenic and tumor-initiating and metastatic capacities are enriched in the CD44(+) cell population, but whether miRNAs regulate CD44(+) prostate cancer cells and prostate cancer metastasis remains unclear. Here we show, through expression analysis, that miR-34a, a p53 target, was underexpressed in CD44(+) prostate cancer cells purified from xenograft and primary tumors. Enforced expression of miR-34a in bulk or purified CD44(+) prostate cancer cells inhibited clonogenic expansion, tumor regeneration, and metastasis. In contrast, expression of miR-34a antagomirs in CD44(-) prostate cancer cells promoted tumor development and metastasis. Systemically delivered miR-34a inhibited prostate cancer metastasis and extended survival of tumor-bearing mice. We identified and validated CD44 as a direct and functional target of miR-34a and found that CD44 knockdown phenocopied miR-34a overexpression in inhibiting prostate cancer regeneration and metastasis. Our study shows that miR-34a is a key negative regulator of CD44(+) prostate cancer cells and establishes a strong rationale for developing miR-34a as a novel therapeutic agent against prostate CSCs.  相似文献   

16.
Tumor immunology fundamentals suggest immunological surveillance has the ability to recognize malignant cells and kill them before a tumor develops. However, cancer cells employ evasion mechanisms whereby the immune system may be actively suppressed or even tolerized to the tumor. Recently cancer stem cells were linked to tumor initiation and formation. However, no reports have addressed whether these cells participate in a tumor’s ability to evade immune surveillance. Recently the glycoprotein CD200, expressed within the innate immune system and other tissues and cells, was shown to be involved in tolerance. Here we describe CD200 co-expression with stem cell markers found on prostate, breast, brain, and colon cancers. This is the first report describing an immunomodulatory molecule on epithelial cancer stem cells. This important finding suggests a mechanism by which a tumor might evades immune system detection.  相似文献   

17.
Tumor progression to the invasive phenotype occurs secondary to upregulated signaling from growth factor receptors that drive key cellular responses like proliferation, migration, and invasion. We hypothesized that Protein kinase Cdelta (PKCdelta)-mediated transcellular contractility is required for migration and invasion of prostate tumor cells. Two invasive human prostate cancer cell lines, DU145 cells overexpressing wildtype human EGFR (DU145WT) and PC3 cells, were studied. PKCdelta is overexpressed in these cells relative to normal prostate epithelial cells, and is activated downstream of EGFR leading to cell motility via modulation of myosin light chain activity. Abrogation of PKCdelta using Rottlerin and specific siRNA significantly decreased migration and invasion of both cell lines in vitro. Both PKCdelta and phosphorylated PKCdelta protein levels were higher in human prostate cancer tissue relative to normal donor prostate as assessed by Western blotting and immunohistochemistry. Thus, we conclude that PKCdelta inhibition can limit migration and invasion of prostate cancer cells.  相似文献   

18.
Parathyroid hormone-related protein (PTHrP) is an oncoprotein that is expressed in many malignancies as well as normal tissues. At essentially every site of expression, PTHrP regulates cell growth and proliferation. We and other investigators have previously reported that PTHrP is widely expressed by prostate cancer. For this tumor, there are substantial in vitro and correlative data that PTHrP expression regulates the progression of the tumor, especially in bone, but little direct data. We studied the effects of PTHrP expression on prostate cancer behavior directly in a mouse model of human prostate cancer cells that were transfected to express different forms of the polypeptide and then injected intraskeletally. Skeletal progression of the prostate cancer cells was evaluated radiologically and by measurement of serum tumor markers. PTHrP transfection converted a non-invasive cell line into one that progressed in the skeleton: Injection of the PTHrP transfected cells resulted in greater tumor progression in bone when compared to non-transfected cells, and this effect was also influenced by non-amino terminal peptides of PTHrP. Serum measurements of PTHrP, IL-6, IL-8, and calcium reflected tumor burden. Our experiments provide direct in vivo evidence that PTHrP expression results in the skeletal progression of prostate cancer cells.  相似文献   

19.
Deciphering molecular pathways involved in the early steps of prostate oncogenesis requires both in vitro and in vivo models derived from human primary tumors. However the few recognized models of human prostate epithelial cancer originate from metastases. To date, very few models are proposed from primary tumors and immortalizing normal human prostate cells does not recapitulate the natural history of the disease. By culturing human prostate primary tumor cells onto human epithelial extra-cellular matrix, we successfully selected a new prostate cancer cell line, IGR-CaP1, and clonally-derived subclones. IGR-CaP1 cells, that harbor a tetraploid karyotype, high telomerase activity and mutated TP53, rapidly induced subcutaneous xenografts in nude mice. Furthermore, IGR-CaP1 cell lines, all exhibiting negativity for the androgen receptor and PSA, express the specific prostate markers alpha-methylacyl-CoA racemase and a low level of the prostate-specific membrane antigen PSMA, along with the prostate basal epithelial markers CK5 and CK14. More importantly, these clones express high CD44, CD133, and CXCR4 levels associated with high expression of α2β1-integrin and Oct4 which are reported to be prostate cancer stemness markers. RT-PCR data also revealed high activation of the Sonic Hedgehog signalling pathway in these cells. Additionally, the IGR-CaP1 cells possess a 3D sphere-forming ability and a renewal capacity by maintaining their CSC potential after xenografting in mice. As a result, the hormone-independent IGR-CaP1 cellular clones exhibit the original features of both basal prostate tissue and cancer stemness. Tumorigenic IGR-CaP1 clones constitute invaluable human models for studying prostate cancer progression and drug assessment in vitro as well as in animals specifically for developing new therapeutic approaches targeting prostate cancer stem cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号